| 1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
| 2. |
中國醫師協會外科醫師分會, 中華醫學會外科學分會胃腸外科學組, 中華醫學會外科學分會結直腸外科學組, 等. 中國結直腸癌肝轉移診斷和綜合治療指南(2023版). 中國實用外科雜志, 2023, 15(2): 86-99.
|
| 3. |
Benson AB, Venook AP, Adam M, et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2024, 22(2 D): e240029. doi: 10.6004/jnccn.2024.0029.
|
| 4. |
Mielgo A, Schmid MC. Liver tropism in cancer: the hepatic metastatic niche. Cold Spring Harb Perspect Med, 2020, 10(3): a037259. doi: 10.1101/cshperspect.a037259.
|
| 5. |
Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell, 2016, 30(5): 668-681.
|
| 6. |
Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol, 2011, 21(2): 139-146.
|
| 7. |
Min BS, Kim NK, Jeong HC, et al. High levels of serum VEGF and TIMP-1 are correlated with colon cancer liver metastasis and intrahepatic recurrence after liver resection. Oncol Lett, 2012, 4(1): 123-130.
|
| 8. |
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438(7069): 820-827.
|
| 9. |
Jin Z, Li Y, Yi H, et al. Pathogenetic development, diagnosis and clinical therapeutic approaches for liver metastasis from colorectal cancer (Review). Int J Oncol, 2025, 66(3): 22. doi: 10.3892/ijo.2025.5728.
|
| 10. |
Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012, 22(5): 571-584.
|
| 11. |
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1): 52-67.
|
| 12. |
Liu Y, Zhang X, Gu W, et al. Unlocking the crucial role of cancer-associated fibroblasts in tumor metastasis: Mechanisms and therapeutic prospects. J Adv Res, 2025, 71: 399-413.
|
| 13. |
Watabe T, Takahashi K, Pietras K, et al. Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system. Semin Cancer Biol, 2023, 92: 130-138.
|
| 14. |
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578): 329-335.
|
| 15. |
Chen J, Cui L, Lu S, et al. Amino acid metabolism in tumor biology and therapy. Cell Death Dis, 2024, 15(1): 42. doi: 10.1038/s41419-024-06435-w.
|
| 16. |
Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol, 2020, 13(1): 156. doi: 10.1186/s13045-020-00991-2.
|
| 17. |
Pei W, Wei K, Wu Y, et al. Colorectal cancer tumor cell-derived exosomal miR-203a-3p promotes CRC metastasis by targeting PTEN-induced macrophage polarization. Gene, 2023, 885: 147692. doi: 10.1016/j.gene.2023.147692.
|
| 18. |
Gu Y, Mi Y, Cao Y, et al. The lncRNA MIR181A1HG in extracellular vesicles derived from highly metastatic colorectal cancer cells promotes liver metastasis by remodeling the extracellular matrix and recruiting myeloid-derived suppressor cells. Cell Biosci, 2025, 15(1): 23. doi: 10.1186/s13578-025-01365-2.
|
| 19. |
Zhang C, Tian C, Zhu R, et al. CircSATB1 promotes colorectal cancer liver metastasis through facilitating FKBP8 degradation via RNF25-Mediated ubiquitination. Adv Sci (Weinh), 2025, 12(13): e2406962. doi: 10.1002/advs.202406962.
|
| 20. |
Liu X, Liu J, Wang X, et al. Cancer-secreted exosomal miR-1246 promotes colorectal cancer liver metastasis by activating hepatic stellate cells. Mol Med, 2025, 31(1): 68. doi: 10.1186/s10020-025-01112-w.
|
| 21. |
Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol, 2019, 40(4): 310-327.
|
| 22. |
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol, 2024, 15: 1353787. doi: 10.3389/fimmu.2024.1353787.
|
| 23. |
Petty AJ, Li A, Wang X, et al. Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J Clin Invest, 2019, 129(12): 5151-5162.
|
| 24. |
Grossman JG, Nywening TM, Belt BA, et al. Recruitment of CCR2+ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology, 2018, 7(9): e1470729. doi: 10.1080/2162402X.2018.1470729.
|
| 25. |
Tu W, Gong J, Zhou Z, et al. TCF4 enhances hepatic metastasis of colorectal cancer by regulating tumor-associated macrophage via CCL2/CCR2 signaling. Cell Death Dis, 2021, 12(10): 882.
|
| 26. |
Li JJ, Wang JH, Tian T, et al. The liver microenvironment orchestrates FGL1-mediated immune escape and progression of metastatic colorectal cancer. Nat Commun, 2023, 14(1): 6690. doi: 10.1038/s41467-023-42332-0.
|
| 27. |
Lu J, Luo Y, Rao D, et al. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol, 2024, 13(1): 39. doi: 10.1186/s40164-024-00505-7.
|
| 28. |
Lin Q, Ren L, Jian M, et al. The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1-STAT3 signaling pathway. Cell Death Dis, 2019, 10(10): 693. doi: 10.1038/s41419-019-1922-5.
|
| 29. |
Wang Y, Yang K, Li J, et al. Neutrophil extracellular traps in cancer: from mechanisms to treatments. Clin Transl Med, 2025, 15(6): e70368. doi: 10.1002/ctm2.70368.
|
| 30. |
Cao X, Lan Q, Xu H, et al. Granulocyte-like myeloid-derived suppressor cells: the culprits of neutrophil extracellular traps formation in the pre-metastatic niche. Int Immunopharmacol, 2024, 143(Pt 3): 113500. doi: 10.1016/j.intimp.2024.113500.
|
| 31. |
Zhang W, Ling J, Xu B, et al. Gut microbiome-mediated monocytes promote liver metastasis. Int Immunopharmacol, 2024, 133: 111877. doi: 10.1016/j.intimp.2024.111877.
|
| 32. |
Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer, 2019, 18(1): 10. doi: 10.1186/s12943-018-0928-4.
|
| 33. |
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020, 10(3): 727-42.
|
| 34. |
Chen X, Du Z, Huang M, et al. Circulating PD-L1 is associated with T cell infiltration and predicts prognosis in patients with CRLM following hepatic resection. Cancer Immunol Immunother, 2022, 71(3): 661-674.
|
| 35. |
Tan HX, Gong WZ, Zhou K, et al. CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol Ther, 2020, 21(3): 258-268.
|
| 36. |
Zhao S, Mi Y, Zheng B, et al. Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles, 2022, 11(1): e12186. doi: 10.1002/jev2.12186.
|
| 37. |
Qi M, Fan S, Huang M, et al. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest, 2022, 132(19): e157399. doi: 10.1172/JCI157399.
|
| 38. |
Keirsse J, Van Damme H, Geeraerts X, et al. The role of hepatic macrophages in liver metastasis. Cell Immunol, 2018, 330: 202-215.
|
| 39. |
Sun H, Meng Q, Shi C, et al. Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer. Hepatology, 2021, 74(5): 2633-2651.
|
| 40. |
Chen J, Huang Z, Chen Y, et al. Lactate and lactylation in cancer. Signal Transduct Target Ther, 2025, 10(1): 38. doi: 10.1038/s41392-024-02082-x.
|
| 41. |
Wada Y, Morine Y, Imura S, et al. HIF-1α expression in liver metastasis but not primary colorectal cancer is associated with prognosis of patients with colorectal liver metastasis. World J Surg Oncol, 2020, 18(1): 241. doi: 10.1186/s12957-020-02012-5.
|
| 42. |
Villareal LB, Falcon DM, Xie L, et al. Hypoxia-inducible factor 3α1 increases epithelial-to-mesenchymal transition and iron uptake to drive colorectal cancer liver metastasis. Br J Cancer, 2024, 130(12): 1904-1915.
|
| 43. |
熊梟, 陳豪, 李元亮, 等. 高糖飲食通過激活RAGE/mTOR信號通路抑制鐵自噬促進結直腸癌侵襲轉移. 中國普外基礎與臨床雜志, 2025, 32(4): 493-504.
|
| 44. |
Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov, 2024, 10(1): 350. doi: 10.1038/s41420-024-02126-9.
|
| 45. |
Li B, Mi J, Yuan Q. Fatty acid metabolism-related enzymes in colorectal cancer metastasis: from biological function to molecular mechanism. Cell Death Discov, 2024, 10(1): 350.
|
| 46. |
Fang H, Dai W, Gu R, et al. myCAF-derived exosomal PWAR6 accelerates CRC liver metastasis via altering glutamine availability and NK cell function in the tumor microenvironment. J Hematol Oncol, 2024, 17(1): 126. doi: 10.1186/s13045-024-01643-5.
|
| 47. |
Li Y, Wu S, Zhao Y, et al. Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer. J Clin Invest, 2024, 134(5): e175031. doi: 10.1172/JCI175031.
|
| 48. |
Ren YM, Zhuang ZY, Xie YH, et al. BCAA-producing clostridium symbiosum promotes colorectal tumorigenesis through the modulation of host cholesterol metabolism. Cell Host Microbe, 2024, 32(9): 1519-1535.
|
| 49. |
Xu S, Zhang Y, Ding X, et al. Intestinal microbiota affects the progression of colorectal cancer by participating in the host intestinal arginine catabolism. Cell Rep, 2025, 44(3): 115370. doi: 10.1016/j.celrep.2025.115370.
|
| 50. |
Tong H, Jiang Z, Song L, et al. Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab, 2024, 36(12): 2493-2510.
|
| 51. |
Doubleday PF, Fornelli L, Ntai I, et al. Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells. FEBS J, 2021, 288(23): 6683-6699.
|
| 52. |
Xu S, Zhang Y, Ding X, et al. Intestinal microbiota affects the progression of colorectal cancer by participating in the host intestinal arginine catabolism. Cell Rep, 2025, 44(3): 115370.
|
| 53. |
Busenhart P, Montalban-Arques A, Katkeviciute E, et al. Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer. J Immunother Cancer, 2022, 10(2): e003465. doi: 10.1136/jitc-2021-003465.
|
| 54. |
Li X, Wu Y, Tian T. TGF-β Signaling in metastatic colorectal cancer (mCRC): from underlying mechanism to potential applications in clinical development. Int J Mol Sci, 2022, 23(22): 14436. doi: 10.3390/ijms232214436.
|
| 55. |
Kuczynski EA, Vermeulen PB, Pezzella F, et al. Vessel co-option in cancer. Nat Rev Clin Oncol, 2019, 16(8): 469-493.
|
| 56. |
Yang D, Dang S, Wang Z, et al. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol, 2024, 14: 1386772. doi: 10.3389/fonc.2024.1386772.
|
| 57. |
Haas G, Fan S, Ghadimi M, et al. Different forms of tumor vascularization and their clinical implications focusing on vessel co-option in colorectal cancer liver metastases. Front Cell Dev Biol, 2021, 9: 612774. doi: 10.3389/fcell.2021.612774.
|
| 58. |
G?rgec B, Hansen IS, Kemmerich G, et al. MRI in addition to CT in patients scheduled for local therapy of colorectal liver metastases (CAMINO): an international, multicentre, prospective, diagnostic accuracy trial. Lancet Oncol, 2024, 25(1): 137-146.
|
| 59. |
消化健康全國重點實驗室 國家消化系統疾病臨床醫學研究中心 中國醫師協會消化醫師分會. 中國結直腸腫瘤無創診斷生物標志物應用專家共識 (2023, 北京). 中華消化內鏡雜志, 2024, 41(3): 169-177.
|
| 60. |
Yang D, Liu J, Qian H, et al. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med, 2023, 55(7): 1322-1332.
|
| 61. |
Brown KM, Xue A, Smith RC, et al. Cancer-associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases. Cancer Med, 2022, 11(2): 492-506.
|
| 62. |
Shang B, Cui H, Xie R, et al. Neutrophil extracellular traps primed intercellular communication in cancer progression as a promising therapeutic target. Biomark Res, 2023, 11(1): 24. doi: 10.1186/s40364-023-00463-y.
|
| 63. |
Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med, 2020, 12(524): eaax7533. doi: 10.1126/scitranslmed.aax7533.
|
| 64. |
Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut, 2017, 66(8): 1441-1448.
|
| 65. |
Dai JH, Tan XR, Qiao H, et al. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell, 2024, 15(4): 239-260.
|
| 66. |
Sun L, Li X, Xiao Y, et al. Mfsd2a suppresses colorectal cancer progression and liver metastasis via the S100A14/STAT3 axis. J Transl Med, 2025, 23(1): 59. doi: 10.1186/s12967-024-05994-y.
|
| 67. |
Hu A, Wang H, Xu Q, et al. A novel CPT1A covalent inhibitor modulates fatty acid oxidation and CPT1A-VDAC1 axis with therapeutic potential for colorectal cancer. Redox Biol, 2023, 68: 102959. doi: 10.1016/j.redox.2023.102959.
|
| 68. |
Qi GX, Zhao RX, Gao C, et al. Recent advances and challenges in colorectal cancer: from molecular research to treatment. World J Gastroenterol, 2025, 31(21): 106964. doi: 10.3748/wjg.v31.i21.106964.
|
| 69. |
Gao Y, Luo C, Yang H, et al. Enhanced efficacy of dual chimeric antigen receptor-T cells targeting programmed death-ligand 1 and cancer-associated fibroblasts in colorectal cancer in vitro. Cytojournal, 2025, 22: 29. doi: 10.25259/Cytojournal_245_2024.
|
| 70. |
Leo M, Sabatino L. Targeting CXCR4 and CD47 receptors: an overview of new and old molecules for a biological personalized anticancer therapy. Int J Mol Sci, 2022, 23(20): 12499. doi: 10.3390/ijms232012499.
|
| 71. |
Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol, 2020, 3(1): 720. doi: 10.1038/s42003-020-01441-y.
|
| 72. |
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer, 2024, 24(10): 655-675.
|
| 73. |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med, 2015, 372(26): 2509-2520.
|
| 74. |
Wang F, Jin Y, Wang M, et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat Med, 2024, 30(4): 1035-1043.
|
| 75. |
劉序, 程黎陽, 王志偉, 等. PD-1/PD-L1抑制劑聯合VEGF/VEGFR抑制劑在晚期難治性結直腸癌中應用的現狀. 中國普外基礎與臨床雜志, 2024, 31(7): 886-891.
|
| 76. |
Sun D, Dong J, Mu Y, et al. Texture features of computed tomography image under the artificial intelligence algorithm and its predictive value for colorectal liver metastasis. Contrast Media Mol Imaging, 2022, 2022: 2279018. doi: 10.1155/2022/2279018.
|
| 77. |
Rompianesi G, Pegoraro F, Ceresa CD, et al. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol, 2022, 28(1): 108-122.
|
| 78. |
Zhou S, Luo X, Chen C, et al. The performance of large language model-powered chatbots compared to oncology physicians on colorectal cancer queries. Int J Surg, 2024, 110(10): 6509-6517.
|