- Second Ward of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650000, P. R. China;
Copyright ? the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
| 1. | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. |
| 2. | Ringelhan M, Pfister D, O'Connor T, et al. The immunology of hepatocellular carcinoma. Nat Immunol, 2018, 19(3): 222-232. |
| 3. | Park JW, Chen M, Colombo M, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int, 2015, 35(9): 2155-2166. |
| 4. | Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314. |
| 5. | Huang A, Yang XR, Chung WY, et al. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther, 2020, 5(1): 146. doi: 10.1038/s41392-020-00264-x. |
| 6. | Ladd AD, Duarte S, Sahin I, et al. Mechanisms of drug resistance in HCC. Hepatology, 2024, 79(4): 926-940. |
| 7. | Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem, 2021, 65(4): 625-639. |
| 8. | Lu JC, Zhang PF, Huang XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol, 2021, 14(1): 200. doi: 10.1186/s13045-021-01207-x. |
| 9. | Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 2019, 20(11): 675-691. |
| 10. | Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211. |
| 11. | Zhang XO, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res, 2016, 26(9): 1277-1287. |
| 12. | Gao Y, Wang J, Zheng Y, et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun, 2016, 7: 12060. doi: 10.1038/ncomms12060. |
| 13. | Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res, 2006, 34(8): e63. doi: 10.1093/nar/gkl151. |
| 14. | Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem, 2010, 79: 351-379. |
| 15. | Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3): 353-358. |
| 16. | Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. |
| 17. | Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388. |
| 18. | Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66. |
| 19. | Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37. |
| 20. | Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209): 415-417. |
| 21. | Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res, 2014, 42(Database issue): D92-97. |
| 22. | Chen Y, Yang F, Fang E, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ, 2019, 26(7): 1346-1364. |
| 23. | Yang Q, Du WW, Wu N, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ, 2017, 24(9): 1609-1620. |
| 24. | Nan A, Chen L, Zhang N, et al. Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family. Adv Sci (Weinh), 2018, 6(2): 1800654. doi: 10.1002/advs.201800654. |
| 25. | Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res, 2016, 44(6): 2846-2858. |
| 26. | Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ, 2017, 24(2): 357-370. |
| 27. | Sun S, Wang W, Luo X, et al. Circular RNA circ-ADD3 inhibits hepatocellular carcinoma metastasis through facilitating EZH2 degradation via CDK1-mediated ubiquitination. Am J Cancer Res, 2019, 9(8): 1695-1707. |
| 28. | Liu B, Yang G, Wang X, et al. CircBACH1 (hsa_circ_0061395) promotes hepatocellular carcinoma growth by regulating p27 repression via HuR. J Cell Physiol, 2020, 235(10): 6929-6941. |
| 29. | Jie M, Wu Y, Gao M, et al. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer, 2020, 19(1): 56. doi: 10.1186/s12943-020-01160-2. |
| 30. | Liu Y, Dong Y, Zhao L, et al. Circular RNA-MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. Int J Oncol, 2018, 53(4): 1752-1762. |
| 31. | Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res, 2015, 25(8): 981-984. |
| 32. | Dai X, Chen C, Yang Q, et al. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis, 2018, 9(5): 454. doi: 10.1038/s41419-018-0485-1. |
| 33. | Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med, 2020, 382(20): 1894-1905. |
| 34. | Hu X, Zhu H, Shen Y, et al. The role of non-coding RNAs in the sorafenib resistance of hepatocellular carcinoma. Front Oncol, 2021, 11: 696705. doi: 10.3389/fonc.2021.696705. |
| 35. | Wu MY, Tang YP, Liu JJ, et al. Global transcriptomic study of circRNAs expression profile in sorafenib resistant hepatocellular carcinoma cells. J Cancer, 2020, 11(10): 2993-3001. |
| 36. | Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. Adv Protein Chem Struct Biol, 2021, 125: 73-120. |
| 37. | Monger A, Boonmuen N, Suksen K, et al. Inhibition of topoisomerase IIα and induction of apoptosis in gastric cancer cells by 19-triisopropyl andrographolide. Asian Pac J Cancer Prev, 2017, 18(10): 2845-2851. |
| 38. | Yang Z, Liu Y, Shi C, et al. Suppression of PTEN/AKT signaling decreases the expression of TUBB3 and TOP2A with subsequent inhibition of cell growth and induction of apoptosis in human breast cancer MCF-7 cells via ATP and caspase-3 signaling pathways. Oncol Rep, 2017, 37(2): 1011-1019. |
| 39. | Ruan Y, Chen T, Zheng L, et al. cDCBLD2 mediates sorafenib resistance in hepatocellular carcinoma by sponging miR-345-5p binding to the TOP2A coding sequence. Int J Biol Sci, 2023, 19(14): 4608-4626. |
| 40. | Li X, Yin X, Bao H, et al. Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Mol Cell Probes, 2023, 67: 101877. doi: 10.1016/j.mcp.2022.101877. |
| 41. | Zhang X, Wang W, Mo S, et al. DEAD-Box helicase 17 circRNA (circDDX17) reduces sorafenib resistance and tumorigenesis in hepatocellular carcinoma. Dig Dis Sci, 2024, 69(6): 2096-2108. |
| 42. | 趙凱, 張輝, 馬艷波. 微小RNA調控肝細胞癌鐵死亡的研究進展. 中國普外基礎與臨床雜志, 2023, 30(12): 1522-1528. |
| 43. | Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol, 2021, 9: 637162. doi: 10.3389/fcell.2021.637162. |
| 44. | Balihodzic A, Prinz F, Dengler MA, et al. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ, 2022, 29(6): 1094-1106. |
| 45. | Jing F, Shi Y, Jiang D, et al. Circ_0001944 targets the miR-1292-5p/FBLN2 axis to facilitate sorafenib resistance in hepatocellular carcinoma by impeding ferroptosis. Immunotargets Ther, 2024, 13: 643-659. |
| 46. | Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8): 599-620. |
| 47. | Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond), 2018, 38(1): 12. doi: 10.1186/s40880-018-0288-x. |
| 48. | Dong FL, Xu ZZ, Wang YQ, et al. Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology, 2024, 22(1): 298. doi: 10.1186/s12951-024-02582-6. |
| 49. | Zhang XY, Li SS, Gu YR, et al. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer, 2024, 23(1): 113. doi: 10.1186/s12943-024-02030-x. |
| 50. | Ngo MT, Jeng HY, Kuo YC, et al. The role of IGF/IGF-1R signaling in hepatocellular carcinomas: stemness-related properties and drug resistance. Int J Mol Sci, 2021, 22(4): 1931. doi: 10.3390/ijms22041931. |
| 51. | Qiu R, Zeng Z. Hsa_circ_0006988 promotes sorafenib resistance of hepatocellular carcinoma by modulating IGF1 using miR-15a-5p. Can J Gastroenterol Hepatol, 2022, 2022: 1206134. doi: 10.1155/2022/1206134. |
| 52. | Du Y, Song W, Chen J, et al. The potassium channel KCa3. 1 promotes cell proliferation by activating SKP2 and metastasis through the EMT pathway in hepatocellular carcinoma. Int J Cancer, 2019, 145(2): 503-516. |
| 53. | Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7): 965. doi: 10.3390/molecules21070965. |
| 54. | Dong ZR, Ke AW, Li T, et al. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer, 2021, 20(1): 75. doi: 10.1186/s12943-021-01361-3. |
| 55. | Ouyang Y, Tang Y, Fu L, et al. Exosomes secreted by chronic hepatitis B patients with PNALT and liver inflammation grade ≥ A2 promoted the progression of liver cancer by transferring miR-25-3p to inhibit the co-expression of TCF21 and HHIP. Cell Prolif, 2020, 53(7): e12833. doi: 10.1111/cpr.12833. |
| 56. | Yau WL, Lam CS, Ng L, et al. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS One, 2013, 8(3): e57882. doi: 10.1371/journal.pone.0057882. |
| 57. | 廖天一, 劉碩, 張翔, 等. 腫瘤微環境中各種免疫細胞在肝細胞癌中的作用研究進展. 中國普外基礎與臨床雜志, 2023, 30(8): 1008-1014. |
| 58. | Chen ZQ, Zuo XL, Cai J, et al. Hypoxia-associated circPRDM4 promotes immune escape via HIF-1α regulation of PD-L1 in hepatocellular carcinoma. Exp Hematol Oncol, 2023, 12(1): 17. doi: 10.1186/s40164-023-00378-2. |
| 59. | Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci, 2022, 113(6): 1968-1983. |
| 60. | Hu Z, Chen G, Zhao Y, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer, 2023, 22(1): 55. doi: 10.1186/s12943-023-01759-1. |
| 61. | Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017, 17(9): 559-572. |
| 62. | Huang XY, Zhang PF, Wei CY, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer, 2020, 19(1): 92. doi: 10.1186/s12943-020-01213-6. |
| 63. | Sampson C, Wang Q, Otkur W, et al. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med, 2023, 13(3): e1204. |
| 64. | Fu J, Liu F, Bai S, et al. Circular RNA CDYL facilitates hepatocellular carcinoma stemness and PD-L1+ exosomes-mediated immunotherapy resistance via stabilizing hornerin protein by blocking synoviolin 1-mediated ubiquitination. Int J Biol Macromol, 2025, 310(Pt 4): 143246. doi: 10.1016/j.ijbiomac.2025.143246. |
| 65. | Lastwika KJ, Wilson W, Li QK, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res, 2016, 76(2): 227-238. |
| 66. | Fu SJ, Shen SL, Li SQ, et al. Hornerin promotes tumor progression and is associated with poor prognosis in hepatocellular carcinoma. BMC Cancer, 2018, 18(1): 815. doi: 10.1186/s12885-018-4719-5. |
| 67. | Lan T, Gao F, Cai Y, et al. The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun, 2025, 16(1): 333. doi: 10.1038/s41467-024-55577-0. |
| 68. | Huang H, Peng J, Yi S, et al. Circular RNA circUBE2D2 functions as an oncogenic factor in hepatocellular carcinoma sorafenib resistance and glycolysis. Am J Transl Res, 2021, 13(6): 6076-6086. |
| 69. | Wang S, Liu D, Wei H, et al. The hsa_circRNA_102049 mediates the sorafenib sensitivity of hepatocellular carcinoma cells by regulating Reelin gene expression. Bioengineered, 2022, 13(2): 2272-2284. |
| 70. | Song R, Ma S, Xu J, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer, 2023, 22(1): 16. doi: 10.1186/s12943-023-01719-9. |
| 71. | Zhang Y, Yao R, Li M, et al. CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis. Mol Cancer, 2025, 24(1): 32. doi: 10.1186/s12943-024-02224-3. |
| 72. | Xu C, Sun W, Liu J, et al. Circ_RBM23 knockdown suppresses chemoresistance, proliferation, migration and invasion of sorafenib-resistant HCC cells through miR-338-3p/RAB1B axis. Pathol Res Pract, 2023, 245: 154435. doi: 10.1016/j.prp.2023.154435. |
| 73. | Weng H, Zeng L, Cao L, et al. circFOXM1 contributes to sorafenib resistance of hepatocellular carcinoma cells by regulating MECP2 via miR-1324. Mol Ther Nucleic Acids, 2021, 23: 811-820. |
| 74. | Yang Q, Wu G. CircRNA-001241 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-21-5p and regulating TIMP3 expression. Gastroenterol Hepatol, 2022, 45(10): 742-752. |
| 75. | Xu J, Ji L, Liang Y, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther, 2020, 5(1): 298. doi: 10.1038/s41392-020-00375-5. |
| 76. | Li M, Pang X, Xu H, et al. CircSCMH1 accelerates sorafenib resistance in hepatocellular carcinoma by regulating HN1 expression via miR-485-5p. Mol Biotechnol, 2025, 67(1): 304-316. |
| 77. | Wang T, Du Y, Song H, et al. hsa_circ_0072309 inhibits oncogenesis in hepatocellular carcinoma by epigenetic activation of its host gene. Cell Biochem Biophys, 2024, 82(4): 3251-3263. |
| 78. | Yang C, Dong Z, Hong H, et al. circFN1 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-1205 and regulating E2F1 expression. Mol Ther Nucleic Acids, 2020, 22: 421-433. |
| 79. | Chen L, Xiao H, Wu Y, et al. CircPHKB decreases the sensitivity of liver cancer cells to sorafenib via miR-1234-3p/CYP2W1 axis. Genomics, 2024, 116(1): 110764. doi: 10.1016/j.ygeno.2023.110764. |
| 80. | Feng Y, Liang L, Jia W, et al. Circ_0007386 promotes the progression of hepatocellular carcinoma through the miR-507/ CCNT2 axis. J Hepatocell Carcinoma, 2024, 11: 1095-1112. |
| 81. | Yang L, Tan W, Wang M, et al. circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation. Cancer Lett, 2025, 612: 217470. doi: 10.1016/j.canlet.2025.217470. |
| 82. | Liu D, Liu W, Chen X, et al. circKCNN2 suppresses the recurrence of hepatocellular carcinoma at least partially via regulating miR-520c-3p/methyl-DNA-binding domain protein 2 axis. Clin Transl Med, 2022, 12(1): e662. doi: 10.1002/ctm2.662. |
| 83. | Yuan F, Tang Y, Liang H, et al. CircPIK3C3 inhibits hepatocellular carcinoma progression and lenvatinib resistance by suppressing the Wnt/β-catenin pathway via the miR-452-5p/SOX15 axis. Genomics, 2025, 117(2): 110999. doi: 10.1016/j.ygeno.2025.110999. |
| 84. | Zhang P, Sun H, Wen P, et al. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma. Mol Ther Nucleic Acids, 2021, 27: 293-303. |
- 1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
- 2. Ringelhan M, Pfister D, O'Connor T, et al. The immunology of hepatocellular carcinoma. Nat Immunol, 2018, 19(3): 222-232.
- 3. Park JW, Chen M, Colombo M, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int, 2015, 35(9): 2155-2166.
- 4. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314.
- 5. Huang A, Yang XR, Chung WY, et al. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther, 2020, 5(1): 146. doi: 10.1038/s41392-020-00264-x.
- 6. Ladd AD, Duarte S, Sahin I, et al. Mechanisms of drug resistance in HCC. Hepatology, 2024, 79(4): 926-940.
- 7. Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem, 2021, 65(4): 625-639.
- 8. Lu JC, Zhang PF, Huang XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol, 2021, 14(1): 200. doi: 10.1186/s13045-021-01207-x.
- 9. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 2019, 20(11): 675-691.
- 10. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211.
- 11. Zhang XO, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res, 2016, 26(9): 1277-1287.
- 12. Gao Y, Wang J, Zheng Y, et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun, 2016, 7: 12060. doi: 10.1038/ncomms12060.
- 13. Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res, 2006, 34(8): e63. doi: 10.1093/nar/gkl151.
- 14. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem, 2010, 79: 351-379.
- 15. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3): 353-358.
- 16. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
- 17. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
- 18. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66.
- 19. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.
- 20. Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209): 415-417.
- 21. Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res, 2014, 42(Database issue): D92-97.
- 22. Chen Y, Yang F, Fang E, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ, 2019, 26(7): 1346-1364.
- 23. Yang Q, Du WW, Wu N, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ, 2017, 24(9): 1609-1620.
- 24. Nan A, Chen L, Zhang N, et al. Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family. Adv Sci (Weinh), 2018, 6(2): 1800654. doi: 10.1002/advs.201800654.
- 25. Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res, 2016, 44(6): 2846-2858.
- 26. Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ, 2017, 24(2): 357-370.
- 27. Sun S, Wang W, Luo X, et al. Circular RNA circ-ADD3 inhibits hepatocellular carcinoma metastasis through facilitating EZH2 degradation via CDK1-mediated ubiquitination. Am J Cancer Res, 2019, 9(8): 1695-1707.
- 28. Liu B, Yang G, Wang X, et al. CircBACH1 (hsa_circ_0061395) promotes hepatocellular carcinoma growth by regulating p27 repression via HuR. J Cell Physiol, 2020, 235(10): 6929-6941.
- 29. Jie M, Wu Y, Gao M, et al. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer, 2020, 19(1): 56. doi: 10.1186/s12943-020-01160-2.
- 30. Liu Y, Dong Y, Zhao L, et al. Circular RNA-MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. Int J Oncol, 2018, 53(4): 1752-1762.
- 31. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res, 2015, 25(8): 981-984.
- 32. Dai X, Chen C, Yang Q, et al. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis, 2018, 9(5): 454. doi: 10.1038/s41419-018-0485-1.
- 33. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med, 2020, 382(20): 1894-1905.
- 34. Hu X, Zhu H, Shen Y, et al. The role of non-coding RNAs in the sorafenib resistance of hepatocellular carcinoma. Front Oncol, 2021, 11: 696705. doi: 10.3389/fonc.2021.696705.
- 35. Wu MY, Tang YP, Liu JJ, et al. Global transcriptomic study of circRNAs expression profile in sorafenib resistant hepatocellular carcinoma cells. J Cancer, 2020, 11(10): 2993-3001.
- 36. Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. Adv Protein Chem Struct Biol, 2021, 125: 73-120.
- 37. Monger A, Boonmuen N, Suksen K, et al. Inhibition of topoisomerase IIα and induction of apoptosis in gastric cancer cells by 19-triisopropyl andrographolide. Asian Pac J Cancer Prev, 2017, 18(10): 2845-2851.
- 38. Yang Z, Liu Y, Shi C, et al. Suppression of PTEN/AKT signaling decreases the expression of TUBB3 and TOP2A with subsequent inhibition of cell growth and induction of apoptosis in human breast cancer MCF-7 cells via ATP and caspase-3 signaling pathways. Oncol Rep, 2017, 37(2): 1011-1019.
- 39. Ruan Y, Chen T, Zheng L, et al. cDCBLD2 mediates sorafenib resistance in hepatocellular carcinoma by sponging miR-345-5p binding to the TOP2A coding sequence. Int J Biol Sci, 2023, 19(14): 4608-4626.
- 40. Li X, Yin X, Bao H, et al. Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Mol Cell Probes, 2023, 67: 101877. doi: 10.1016/j.mcp.2022.101877.
- 41. Zhang X, Wang W, Mo S, et al. DEAD-Box helicase 17 circRNA (circDDX17) reduces sorafenib resistance and tumorigenesis in hepatocellular carcinoma. Dig Dis Sci, 2024, 69(6): 2096-2108.
- 42. 趙凱, 張輝, 馬艷波. 微小RNA調控肝細胞癌鐵死亡的研究進展. 中國普外基礎與臨床雜志, 2023, 30(12): 1522-1528.
- 43. Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol, 2021, 9: 637162. doi: 10.3389/fcell.2021.637162.
- 44. Balihodzic A, Prinz F, Dengler MA, et al. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ, 2022, 29(6): 1094-1106.
- 45. Jing F, Shi Y, Jiang D, et al. Circ_0001944 targets the miR-1292-5p/FBLN2 axis to facilitate sorafenib resistance in hepatocellular carcinoma by impeding ferroptosis. Immunotargets Ther, 2024, 13: 643-659.
- 46. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8): 599-620.
- 47. Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond), 2018, 38(1): 12. doi: 10.1186/s40880-018-0288-x.
- 48. Dong FL, Xu ZZ, Wang YQ, et al. Exosome-derived circUPF2 enhances resistance to targeted therapy by redeploying ferroptosis sensitivity in hepatocellular carcinoma. J Nanobiotechnology, 2024, 22(1): 298. doi: 10.1186/s12951-024-02582-6.
- 49. Zhang XY, Li SS, Gu YR, et al. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer, 2024, 23(1): 113. doi: 10.1186/s12943-024-02030-x.
- 50. Ngo MT, Jeng HY, Kuo YC, et al. The role of IGF/IGF-1R signaling in hepatocellular carcinomas: stemness-related properties and drug resistance. Int J Mol Sci, 2021, 22(4): 1931. doi: 10.3390/ijms22041931.
- 51. Qiu R, Zeng Z. Hsa_circ_0006988 promotes sorafenib resistance of hepatocellular carcinoma by modulating IGF1 using miR-15a-5p. Can J Gastroenterol Hepatol, 2022, 2022: 1206134. doi: 10.1155/2022/1206134.
- 52. Du Y, Song W, Chen J, et al. The potassium channel KCa3. 1 promotes cell proliferation by activating SKP2 and metastasis through the EMT pathway in hepatocellular carcinoma. Int J Cancer, 2019, 145(2): 503-516.
- 53. Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7): 965. doi: 10.3390/molecules21070965.
- 54. Dong ZR, Ke AW, Li T, et al. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer, 2021, 20(1): 75. doi: 10.1186/s12943-021-01361-3.
- 55. Ouyang Y, Tang Y, Fu L, et al. Exosomes secreted by chronic hepatitis B patients with PNALT and liver inflammation grade ≥ A2 promoted the progression of liver cancer by transferring miR-25-3p to inhibit the co-expression of TCF21 and HHIP. Cell Prolif, 2020, 53(7): e12833. doi: 10.1111/cpr.12833.
- 56. Yau WL, Lam CS, Ng L, et al. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS One, 2013, 8(3): e57882. doi: 10.1371/journal.pone.0057882.
- 57. 廖天一, 劉碩, 張翔, 等. 腫瘤微環境中各種免疫細胞在肝細胞癌中的作用研究進展. 中國普外基礎與臨床雜志, 2023, 30(8): 1008-1014.
- 58. Chen ZQ, Zuo XL, Cai J, et al. Hypoxia-associated circPRDM4 promotes immune escape via HIF-1α regulation of PD-L1 in hepatocellular carcinoma. Exp Hematol Oncol, 2023, 12(1): 17. doi: 10.1186/s40164-023-00378-2.
- 59. Huang M, Huang X, Huang N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells. Cancer Sci, 2022, 113(6): 1968-1983.
- 60. Hu Z, Chen G, Zhao Y, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer, 2023, 22(1): 55. doi: 10.1186/s12943-023-01759-1.
- 61. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017, 17(9): 559-572.
- 62. Huang XY, Zhang PF, Wei CY, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer, 2020, 19(1): 92. doi: 10.1186/s12943-020-01213-6.
- 63. Sampson C, Wang Q, Otkur W, et al. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med, 2023, 13(3): e1204.
- 64. Fu J, Liu F, Bai S, et al. Circular RNA CDYL facilitates hepatocellular carcinoma stemness and PD-L1+ exosomes-mediated immunotherapy resistance via stabilizing hornerin protein by blocking synoviolin 1-mediated ubiquitination. Int J Biol Macromol, 2025, 310(Pt 4): 143246. doi: 10.1016/j.ijbiomac.2025.143246.
- 65. Lastwika KJ, Wilson W, Li QK, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res, 2016, 76(2): 227-238.
- 66. Fu SJ, Shen SL, Li SQ, et al. Hornerin promotes tumor progression and is associated with poor prognosis in hepatocellular carcinoma. BMC Cancer, 2018, 18(1): 815. doi: 10.1186/s12885-018-4719-5.
- 67. Lan T, Gao F, Cai Y, et al. The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun, 2025, 16(1): 333. doi: 10.1038/s41467-024-55577-0.
- 68. Huang H, Peng J, Yi S, et al. Circular RNA circUBE2D2 functions as an oncogenic factor in hepatocellular carcinoma sorafenib resistance and glycolysis. Am J Transl Res, 2021, 13(6): 6076-6086.
- 69. Wang S, Liu D, Wei H, et al. The hsa_circRNA_102049 mediates the sorafenib sensitivity of hepatocellular carcinoma cells by regulating Reelin gene expression. Bioengineered, 2022, 13(2): 2272-2284.
- 70. Song R, Ma S, Xu J, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer, 2023, 22(1): 16. doi: 10.1186/s12943-023-01719-9.
- 71. Zhang Y, Yao R, Li M, et al. CircTTC13 promotes sorafenib resistance in hepatocellular carcinoma through the inhibition of ferroptosis by targeting the miR-513a-5p/SLC7A11 axis. Mol Cancer, 2025, 24(1): 32. doi: 10.1186/s12943-024-02224-3.
- 72. Xu C, Sun W, Liu J, et al. Circ_RBM23 knockdown suppresses chemoresistance, proliferation, migration and invasion of sorafenib-resistant HCC cells through miR-338-3p/RAB1B axis. Pathol Res Pract, 2023, 245: 154435. doi: 10.1016/j.prp.2023.154435.
- 73. Weng H, Zeng L, Cao L, et al. circFOXM1 contributes to sorafenib resistance of hepatocellular carcinoma cells by regulating MECP2 via miR-1324. Mol Ther Nucleic Acids, 2021, 23: 811-820.
- 74. Yang Q, Wu G. CircRNA-001241 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-21-5p and regulating TIMP3 expression. Gastroenterol Hepatol, 2022, 45(10): 742-752.
- 75. Xu J, Ji L, Liang Y, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther, 2020, 5(1): 298. doi: 10.1038/s41392-020-00375-5.
- 76. Li M, Pang X, Xu H, et al. CircSCMH1 accelerates sorafenib resistance in hepatocellular carcinoma by regulating HN1 expression via miR-485-5p. Mol Biotechnol, 2025, 67(1): 304-316.
- 77. Wang T, Du Y, Song H, et al. hsa_circ_0072309 inhibits oncogenesis in hepatocellular carcinoma by epigenetic activation of its host gene. Cell Biochem Biophys, 2024, 82(4): 3251-3263.
- 78. Yang C, Dong Z, Hong H, et al. circFN1 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-1205 and regulating E2F1 expression. Mol Ther Nucleic Acids, 2020, 22: 421-433.
- 79. Chen L, Xiao H, Wu Y, et al. CircPHKB decreases the sensitivity of liver cancer cells to sorafenib via miR-1234-3p/CYP2W1 axis. Genomics, 2024, 116(1): 110764. doi: 10.1016/j.ygeno.2023.110764.
- 80. Feng Y, Liang L, Jia W, et al. Circ_0007386 promotes the progression of hepatocellular carcinoma through the miR-507/ CCNT2 axis. J Hepatocell Carcinoma, 2024, 11: 1095-1112.
- 81. Yang L, Tan W, Wang M, et al. circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation. Cancer Lett, 2025, 612: 217470. doi: 10.1016/j.canlet.2025.217470.
- 82. Liu D, Liu W, Chen X, et al. circKCNN2 suppresses the recurrence of hepatocellular carcinoma at least partially via regulating miR-520c-3p/methyl-DNA-binding domain protein 2 axis. Clin Transl Med, 2022, 12(1): e662. doi: 10.1002/ctm2.662.
- 83. Yuan F, Tang Y, Liang H, et al. CircPIK3C3 inhibits hepatocellular carcinoma progression and lenvatinib resistance by suppressing the Wnt/β-catenin pathway via the miR-452-5p/SOX15 axis. Genomics, 2025, 117(2): 110999. doi: 10.1016/j.ygeno.2025.110999.
- 84. Zhang P, Sun H, Wen P, et al. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma. Mol Ther Nucleic Acids, 2021, 27: 293-303.

