| 1. |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl), 2022, 135(5): 584-590.
|
| 2. |
Denkert C, Liedtke C, Tutt A, et al. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet, 2017, 389(10087): 2430-2442.
|
| 3. |
Harris MA, Savas P, Virassamy B, et al. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer, 2024, 24(8): 554-577.
|
| 4. |
Abe K, Watabe T, Kaneda-Nakashima K, et al. Evaluation of targeted alpha therapy using [211At]FAPI1 in triple-negative breast cancer xenograft models. Int J Mol Sci, 2024, 25(21): 11567. doi: 10.3390/ijms252111567.
|
| 5. |
Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med, 2021, 384(25): 2394-2405.
|
| 6. |
Bianchini G, De Angelis C, Licata L, et al. Treatment landscape of triple-negative breast cancer—expanded options, evolving needs. Nat Rev Clin Oncol, 2022, 19(2): 91-113.
|
| 7. |
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013, 19(11): 1423-1437.
|
| 8. |
Yang J, Xin B, Wang X, et al. Cancer-associated fibroblasts in breast cancer in the single-cell era: opportunities and challenges. Biochim Biophys Acta Rev Cancer, 2025, 1880(2): 189291. doi: 10.1016/j.bbcan.2025.189291.
|
| 9. |
Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell, 2014, 159(1): 80-93.
|
| 10. |
Gao C, Jian C, Wang L, et al. FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy. Int J Pharm, 2025, 670: 125190. doi: 10.1016/j.ijpharm.2025.125190.
|
| 11. |
Melero I, Tanos T, Bustamante M, et al. A first-in-human study of the fibroblast activation protein-targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. Sci Transl Med, 2023, 15(695): eabp9229. doi: 10.1126/scitranslmed.abp9229.
|
| 12. |
Zhang FF, Qiao Y, Xie Y, et al. Epitope-based minigene vaccine targeting fibroblast activation protein α induces specific immune responses and anti-tumor effects in 4T1 murine breast cancer model. Int Immunopharmacol, 2022, 112: 109237. doi: 10.1016/j.intimp.2022.109237.
|
| 13. |
Das S, Valton J, Duchateau P, et al. Stromal depletion by TALEN-edited universal hypoimmunogenic FAP-CAR T cells enables infiltration and anti-tumor cytotoxicity of tumor antigen-targeted CAR-T immunotherapy. Front Immunol, 2023, 14: 1172681. doi: 10.3389/fimmu.2023.1172681.
|
| 14. |
Garate-Soraluze E, Serrano-Mendioroz I, Fernández-Rubio L, et al. 4-1BB agonist targeted to fibroblast activation protein α synergizes with radiotherapy to treat murine breast tumor models. J Immunother Cancer, 2025, 13(2): e009852. doi: 10.1136/jitc-2024-009852.
|
| 15. |
McGale J, Khurana S, Howell H, et al. FAP-targeted SPECT/CT and PET/CT imaging for breast cancer patients. Clin Nucl Med, 2025, 50(3): e138-e145. doi: 10.1097/RLU.0000000000005617.
|
| 16. |
Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun, 2013, 4: 2516. doi: 10.1038/ncomms3516.
|
| 17. |
Mei J, Chu J, Yang K, et al. Angiotensin receptor blocker attacks armored and cold tumors and boosts immune checkpoint blockade. J Immunother Cancer, 2024, 12(9): e009327. doi: 10.1136/jitc-2024-009327.
|
| 18. |
Guan X, Shen Y, Zhao C, et al. Cascade-responsive nanoprodrug disrupts immune-fibroblast communications for potentiated cancer mechanoimmunotherapy. Adv Healthc Mater, 2025, 14(11): e2500176. doi: 10.1002/adhm.202500176.
|
| 19. |
Su S, Chen J, Yao H, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell, 2018, 172(4): 841-856.
|
| 20. |
Fang J , Jiang Q , Yang X , et al. Construction of targeting GPR77+CD10+ lipid nanoparticles and validation of targeting capability in vitro and in vivo. Current Res Biotechnol, 2025, 9(000). doi: 10.1016/j.crbiot.2025.100291.
|
| 21. |
Fan G, Yu B, Tang L, et al. TSPAN8+ myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci Transl Med, 2024, 16(741): eadj5705.
|
| 22. |
Hu D, Li Z, Zheng B, et al. Cancer-associated fibroblasts in breast cancer: challenges and opportunities. Cancer Commun (Lond), 2022, 42(5): 401-434.
|
| 23. |
Zhang H, Yue X, Chen Z, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer, 2023, 22(1): 159. doi: 10.1186/s12943-023-01860-5.
|
| 24. |
Xu C, Zhao H, Chen H, et al. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther, 2015, 9: 4953-4964.
|
| 25. |
Ciavattone NG, Bevoor A, Farfel A, et al. Inhibiting CXCR4 reduces immunosuppressive effects of myeloid cells in breast cancer immunotherapy. Sci Rep, 2025, 15(1): 5204. doi: 10.1038/s41598-025-89882-5.
|
| 26. |
Zhang Y, Han X, Wang K, et al. Co-delivery nanomicelles for potentiating TNBC immunotherapy by synergetically reshaping CAFs-mediated tumor stroma and reprogramming immunosuppressive microenvironment. Int J Nanomedicine, 2023, 18: 4329-4346.
|
| 27. |
Bao G, Wang Z, Liu L, et al. Targeting CXCR4/CXCL12 axis via [177Lu]Lu-DOTAGA. (SA. FAPi)2 with CXCR4 antagonist in triple-negative breast cancer. Eur J Nucl Med Mol Imaging, 2024, 51(9): 2744-2757.
|
| 28. |
Jang BY, Shin MK, Han DH, et al. Curcumin disrupts a positive feedback loop between ADMSCs and cancer cells in the breast tumor microenvironment via the CXCL12/CXCR4 axis. Pharmaceutics, 2023, 15(11): 2627. doi: 10.3390/pharmaceutics15112627.
|
| 29. |
Wang Y, Zhao L, Han X, et al. Saikosaponin A inhibits triple-negative breast cancer growth and metastasis through downregulation of CXCR4. Front Oncol, 2020, 9: 1487. doi: 10.3389/fonc.2019.01487.
|
| 30. |
Zhang P, Qin C, Liu N, et al. The programmed site-specific delivery of LY3200882 and PD-L1 siRNA boosts immunotherapy for triple-negative breast cancer by remodeling tumor microenvironment. Biomaterials, 2022 May: 284: 121518. doi: 10.1016/j.biomaterials.2022.121518.
|
| 31. |
Yang M, Qin C, Tao L, et al. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment. Biomaterials, 2023, 301: 122253. doi: 10.1016/j.biomaterials.2023.122253.
|
| 32. |
Wu Y, Yi Z, Li J, et al. FGFR blockade boosts T cell infiltration into triple-negative breast cancer by regulating cancer-associated fibroblasts. Theranostics, 2022, 12(10): 4564-4580.
|
| 33. |
Wang B, Liu W, Liu C, et al. Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-Met signaling pathway. Int J Radiat Oncol Biol Phys, 2023, 116(3): 640-654.
|
| 34. |
Osuala KO, Chalasani A, Aggarwal N, et al. Paracrine activation of STAT3 drives GM-CSF expression in breast carcinoma cells, generating a symbiotic signaling network with breast carcinoma-associated fibroblasts. Cancers (Basel), 2024, 16(16): 2910. doi: 10.3390/cancers16162910.
|
| 35. |
Pernas S, Martin M, Kaufman PA, et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol, 2018, 19(6): 812-824.
|
| 36. |
Lai YW, Liu ZW, Lin MH, et al. Melatonin increases olaparib sensitivity and suppresses cancer-associated fibroblast infiltration via suppressing the LAMB3-CXCL2 axis in TNBC. Pharmacol Res, 2024, 209: 107429. doi: 10.1016/j.phrs.2024.107429.
|
| 37. |
Xia J, Zhang S, Zhang R, et al. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. J Nanobiotechnology, 2022, 20(1): 414. doi: 10.1186/s12951-022-01623-2.
|
| 38. |
Xu S, Zheng S, Ma N, et al. Rhein potentiates doxorubicin in treating triple negative breast cancer by inhibiting cancer-associated fibroblasts. Biochem Pharmacol, 2024, 223: 116139. doi: 10.1016/j.bcp.2024.116139.
|
| 39. |
Giannoni E, Bianchini F, Masieri L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res, 2010, 70(17): 6945-6956.
|
| 40. |
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol, 2021, 18(12): 792-804.
|
| 41. |
Erez N, Truitt M, Olson P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 2010, 17(2): 135-147.
|
| 42. |
Glabman RA, Choyke PL, Sato N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy. Cancers (Basel), 2022, 14(16): 3906. doi: 10.3390/cancers14163906.
|
| 43. |
Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A, 2010, 107(46): 20009-20014.
|
| 44. |
Toullec A, Gerald D, Despouy G, et al. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med, 2010, 2(6): 211-230.
|
| 45. |
De Luca G, Petrillo G, Scognamiglio I, et al. Fibroblasts activated by miRs-185-5p, miR-652-5p, and miR-1246 shape the tumor microenvironment in triple-negative breast cancer via PATZ1 downregulation. Cell Mol Life Sci, 2025, 82(1): 287. doi: 10.1007/s00018-025-05781-y.
|
| 46. |
Quintavalle C, Ingenito F, Roscigno G, et al. Ex. 50. T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov, 2025, 11(1): 94. doi: 10.1038/s41420-025-02363-6.
|
| 47. |
Cote GM, Tine BV, Clifton K, et al. First-in-class non-cellular targeting antibody-drug conjugate (ADC), micvotabart pelidotin (MICVO), in patients (PTS) with advanced sarcoma. ESMO Rare Cancers, 2025, 4: 100051. doi: 10.1016/j.esmorc.2025.100051.
|
| 48. |
Rodriguez AB, Facklam A, Trickett J, et al. Mouse analog of micvotabart pelidotin sensitizes a refractory syngeneic breast cancer model to anti-PD1 therapy [abstract] // Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2025 Oct 22-26. Boston, MA. Philadelphia (PA): AACR. Mol Cancer Ther, 2025, 24(10 Suppl): Abstract nr A115. doi: org/10.1158/1535-7163.TARG-25-A115.
|
| 49. |
Zhang Y, Zhou J, Wang Y, et al. Stimuli-responsive polymer-dasatinib prodrug to reprogram cancer-associated fibroblasts for boosted immunotherapy. J Control Release, 2025, 381: 113606. doi: 10.1016/j.jconrel.2025.113606.
|
| 50. |
Desroys du Roure P, David T, Mallavialle A, et al. Antibodies against the multifaceted cathepsin D protein open new avenues for TNBC immunotherapy. J Immunother Cancer, 2025, 13(1): e009548. doi: 10.1136/jitc-2024-009548.
|
| 51. |
Tan Y, Yang YG, Zhang X, et al. Tumor cell-derived osteopontin promotes tumor fibrosis indirectly via tumor-associated macrophages. J Transl Med, 2025, 23(1): 432. doi: 10.1186/s12967-025-06444-z.
|
| 52. |
Zhang Z, Wang Z, Xiong Y, et al. A two-pronged strategy to alleviate tumor hypoxia and potentiate photodynamic therapy by mild hyperthermia. Biomater Sci, 2022, 11(1): 108-118.
|
| 53. |
Cao Y, Wen E, Chen Q, et al. Multifunctional ICG-SB@Lip-ZA Nanosystem focuses on remodeling the inflammatory-immunosuppressive microenvironment after photothermal therapy to potentiate cancer photothermal immunotherapy. Adv Healthc Mater, 2025, 14(1): e2402211. doi: 10.1002/adhm.202402211.
|
| 54. |
Geng S, Xiang T, Shi Y, et al. Locally producing antibacterial peptide to deplete intratumoral pathogen for preventing metastatic breast cancer. Acta Pharm Sin B, 2025, 15(2): 1084-1097.
|
| 55. |
Cords L, de Souza N, Bodenmiller B. Classifying cancer-associated fibroblasts—the good, the bad, and the target. Cancer Cell, 2024, 42(9): 1480-1485.
|