- Liver Transplantation Group, Branch of Organ Transplantation of Chinese Medical Association; Branch of Organ Transplant Physicians of Chinese Medical Doctor Association;
Renal dysfunction is one of the common perioperative complications of liver transplantation, involving the preoperative, intraoperative, and postoperative stages. Its occurrence is closely associated with multiple factors, including underlying liver disease, intraoperative hemodynamic instability, ischemia-reperfusion injury, and immunosuppressive therapy. Renal injury not only affects recipients’ short-term outcomes, but may also lead to long-term deterioration of renal function, increase the risk of chronic kidney disease, and exert a sustained negative impact on quality of life. Although postoperative immunosuppressive therapy can effectively prevent rejection, long-term use—particularly of calcineurin inhibitors—may cause substantial nephrotoxicity. In recent years, strategies that use combination immunosuppressive regimens to reduce/minimize calcineurin inhibitors exposure and thereby preserve renal function have attracted increasing attention. Mammalian target of rapamycin inhibitors, which are commonly used immunosuppressants after liver transplantation, play an important role in preventing rejection, reducing tumor recurrence, and preserving renal function. This consensus aims to standardize the use and management of mammalian target of rapamycin inhibitors in the prevention and treatment of renal injury after liver transplantation, provide scientific, standardized, and rational guidance for the clinical application of immunosuppressive regimens, reduce the incidence of renal dysfunction, and help improve the quality of life of liver transplant recipients.
Citation: YANG Jiayin, XU Xiao, CHENG Ying. Expert consensus on the clinical application of mammalian target of rapamycin inhibitors in liver transplant recipients with renal dysfunction in China (2025 edition). CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2026, 33(2): 141-153. doi: 10.7507/1007-9424.202509061 Copy
Copyright ? the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
| 1. | 中華醫學會器官移植學分會, 中國醫師協會器官移植醫師分會. 中國肝移植受者腎損傷管理臨床實踐指南 (2023版). 中華移植雜志 (電子版), 2023, 17(6): 321-331. |
| 2. | Pacheco MP, Carneiro-D’Albuquerque LA, Mazo DF. Current aspects of renal dysfunction after liver transplantation. World J Hepatol, 2022, 14(1): 45-61. |
| 3. | Cullaro G. Timing of acute kidney injury recovery a promising indicator of outcomes after liver transplantation. Transplantation, 2022, 106(4): 700-701. |
| 4. | Del Toro-Cisneros N, Antiga-López FJ, Felix-Bauer KC, et al. Development of a prediction index for persistent acute kidney injury following orthotopic liver transplant. Ann Hepatol, 2025, 30(2): 101923. doi: 10.1016/j.aohep.2025.101923. |
| 5. | Berkowitz RJ, Engoren MC, Mentz G, et al. Intraoperative risk factors of acute kidney injury after liver transplantation. Liver Transpl, 2022, 28(7): 1207-1223. |
| 6. | Nashan B, Schemmer P, Braun F, et al. Early everolimus-facilitated reduced tacrolimus in liver transplantation: results from the randomized HEPHAISTOS Trial. Liver Transpl, 2022, 28(6): 998-1010. |
| 7. | Watson CJ, Gimson AE, Alexander GJ, et al. A randomized controlled trial of late conversion from calcineurin inhibitor (CNI)-based to sirolimus-based immunosuppression in liver transplant recipients with impaired renal function. Liver Transpl, 2007, 13(12): 1694-1702. |
| 8. | Durand F, Francoz C, Asrani SK, et al. Acute kidney injury after liver transplantation. Transplantation, 2018, 102(10): 1636-1649. |
| 9. | Parajuli S, Foley D, Djamali A, et al. Renal function and transplantation in liver disease. Transplantation, 2015, 99(9): 1756-1764. |
| 10. | Park CS, Yoon YI, Kim N, et al. Analysis of outcomes and renal recovery after adult living-donor liver transplantation among recipients with hepatorenal syndrome. Am J Transplant, 2022, 22(10): 2381-2391. |
| 11. | Chen YC, Lin HY, Li CY, et al. A nationwide cohort study suggests that hepatitis C virus infection is associated with increased risk of chronic kidney disease. Kidney Int, 2014, 85(5): 1200-1207. |
| 12. | Liu J, Chen R, Zhou S, et al. Acute kidney injury is associated with liver-related outcomes in patients with hepatitis B virus infection: a retrospective cohort study. BMC Nephrol, 2025, 26(1): 12. doi: 10.1186/s12882-024-03925-z. |
| 13. | Nadim MK, Kellum JA, Forni L, et al. Acute kidney injury in patients with cirrhosis: Acute Disease Quality Initiative (ADQI) and International Club of Ascites (ICA) joint multidisciplinary consensus meeting. J Hepatol, 2024, 81(1): 163-183. |
| 14. | Kim WH, Oh HW, Yang SM, et al. Intraoperative hemodynamic parameters and acute kidney injury after living donor liver transplantation. Transplantation, 2019, 103(9): 1877-1886. |
| 15. | Pandey CK, Singh A, Kajal K, et al. Intraoperative blood loss in orthotopic liver transplantation: the predictive factors. World J Gastrointest Surg, 2015, 7(6): 86-93. |
| 16. | Caragata R, Emerson S, Santema ML, et al. Intraoperative hypotension and the risk of acute kidney injury following liver transplantation. Clin Transplant, 2023, 37(10): e15053. doi: 10.1111/ctr.15053. |
| 17. | Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med, 2007, 357(25): 2562-2575. |
| 18. | Pascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol, 2018, 29(7): 1979-1991. |
| 19. | Lin M, Mittal S, Sahebjam F, et al. Everolimus with early withdrawal or reduced-dose calcineurin inhibitors improves renal function in liver transplant recipients: a systematic review and meta-analysis. Clin Transplant, 2017, 31(2). doi: 10.1111/ctr.12872. |
| 20. | Nashan B, Schemmer P, Braun F, et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: study protocol for a randomized controlled trial. Trials, 2015, 16: 118. doi: 10.1186/s13063-015-0626-0. |
| 21. | Sang BH, Bang JY, Song JG, et al. Hypoalbuminemia within two postoperative days is an independent risk factor for acute kidney injury following living donor liver transplantation: a propensity score analysis of 998 consecutive patients. Crit Care Med, 2015, 43(12): 2552-2561. |
| 22. | Kalisvaart M, Schlegel A, Umbro I, et al. The impact of combined warm ischemia time on development of acute kidney injury in donation after circulatory death liver transplantation: stay within the golden hour. Transplantation, 2018, 102(5): 783-793. |
| 23. | Leithead JA, Tariciotti L, Gunson B, et al. Donation after cardiac death liver transplant recipients have an increased frequency of acute kidney injury. Am J Transplant, 2012, 12(4): 965-975. |
| 24. | He ZL, Zhou JB, Liu ZK, et al. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 222-231. |
| 25. | Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol, 2009, 9(5): 324-337. |
| 26. | Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther, 2020, 215: 107623. doi: 10.1016/j.pharmthera.2020.107623. |
| 27. | Dumont FJ, Su Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci, 1996, 58(5): 373-395. |
| 28. | Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol, 2009, 36 Suppl 3: S3-S17. |
| 29. | Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab, 2014, 19(3): 373-379. |
| 30. | Schildknecht A, Brauer S, Brenner C, et al. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci U S A, 2010, 107(1): 199-203. |
| 31. | Gedaly R, De Stefano F, Turcios L, et al. mTOR inhibitor everolimus in regulatory T cell expansion for clinical application in transplantation. Transplantation, 2019, 103(4): 705-715. |
| 32. | Levitsky J, Burrell BE, Kanaparthi S, et al. Immunosuppression withdrawal in liver transplant recipients on sirolimus. Hepatology, 2020, 72(2): 569-583. |
| 33. | Rozen-Zvi B, Hayashida T, Hubchak SC, et al. TGF-β/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1α expression. Am J Physiol Renal Physiol, 2013, 305(4): F485-F494. |
| 34. | Liu Y. Rapamycin and chronic kidney disease: beyond the inhibition of inflammation. Kidney Int, 2006, 69(11): 1925-1927. |
| 35. | 畢華強, 劉輝, 張曦, 等. Akt/mTOR信號在轉化生長因子-β誘導動脈內皮間質轉化中的作用研究. 中國普外基礎與臨床雜志, 2017, 24(7): 808-812. |
| 36. | Vizza D, Perri A, Toteda G, et al. Rapamycin-induced autophagy protects proximal tubular renal cells against proteinuric damage through the transcriptional activation of the nerve growth factor receptor NGFR. Autophagy, 2018, 14(6): 1028-1042. |
| 37. | Infante B, Bellanti F, Correale M, et al. mTOR inhibition improves mitochondria function/biogenesis and delays cardiovascular aging in kidney transplant recipients with chronic graft dysfunction. Aging (Albany NY), 2021, 13(6): 8026-8039. |
| 38. | Granata S, Dalla Gassa A, Carraro A, et al. Sirolimus and everolimus pathway: reviewing candidate genes influencing their intracellular effects. Int J Mol Sci, 2016, 17(5): 735. doi: 10.3390/ijms17050735. |
| 39. | Klawitter J, Nashan B, Christians U. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf, 2015, 14(7): 1055-1070. |
| 40. | Hilmi IA, Damian D, Al-Khafaji A, et al. Acute kidney injury following orthotopic liver transplantation: incidence, risk factors, and effects on patient and graft outcomes. Br J Anaesth, 2015, 114(6): 919-926. |
| 41. | Trinh E, Alam A, Tchervenkov J, et al. Impact of acute kidney injury following liver transplantation on long-term outcomes. Clin Transplant, 2017, 31(1): e12863. doi: 10.1111/ctr.12863. doi: 10.1111/ctr.12863. |
| 42. | Reich DJ, Clavien PA, Hodge EE, et al. Mycophenolate mofetil for renal dysfunction in liver transplant recipients on cyclosporine or tacrolimus: randomized, prospective, multicenter pilot study results. Transplantation, 2005, 80(1): 18-25. |
| 43. | Pageaux GP, Rostaing L, Calmus Y, et al. Mycophenolate mofetil in combination with reduction of calcineurin inhibitors for chronic renal dysfunction after liver transplantation. Liver Transpl, 2006, 12(12): 1755-1760. |
| 44. | Créput C, Blandin F, Deroure B, et al. Long-term effects of calcineurin inhibitor conversion to mycophenolate mofetil on renal function after liver transplantation. Liver Transpl, 2007, 13(7): 1004-1010. |
| 45. | Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2016 annual data report: liver. Am J Transplant, 2018, 18 Suppl 1: 172-253. |
| 46. | 中國器官移植發展基金會器官移植受者健康管理專家委員會, 中國醫師協會器官移植醫師分會, 中華醫學會器官移植學分會, 等. 肝移植受者雷帕霉素靶蛋白抑制劑臨床應用中國專家共識 (2023版). 中華移植雜志 (電子版), 2023, 17(4): 193-204. |
| 47. | Martín LG, Vázquez-Garza JN, Grande AM, et al. Postreperfusion syndrome in liver transplant: a risk factor for acute kidney failure: a retrospective analysis. Transplant Proc, 2022, 54(8): 2277-2284. |
| 48. | Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract, 2012, 120(4): c179-c184. |
| 49. | De Simone P, Metselaar HJ, Fischer L, et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transpl, 2009, 15(10): 1262-1269. |
| 50. | Abdelmalek MF, Humar A, Stickel F, et al. Sirolimus conversion regimen versus continued calcineurin inhibitors in liver allograft recipients: a randomized trial. Am J Transplant, 2012, 12(3): 694-705. |
| 51. | Asrani SK, Wiesner RH, Trotter JF, et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000-2003 phase Ⅱ prospective randomized trial. Am J Transplant, 2014, 14(2): 356-366. |
| 52. | De Simone P, Nevens F, De Carlis L, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant, 2012, 12(11): 3008-3020. |
| 53. | Rodríguez-Perálvarez M, Guerrero M, Barrera L, et al. Impact of early initiated everolimus on the recurrence of hepatocellular carcinoma after liver transplantation. Transplantation, 2018, 102(12): 2056-2064. |
| 54. | 中國器官移植發展基金會器官移植受者健康管理專家委員會, 中國醫師協會器官移植醫師分會, 中華醫學會器官移植學分會, 等. 肝移植受者雷帕霉素靶蛋白抑制劑臨床應用中國專家共識 (2023 版). 肝膽胰外科雜志, 2023, 35(9): 513-524. |
| 55. | 中華醫學會器官移植學分會. 中國肝移植免疫抑制治療與排斥反應診療規范 (2019版). 器官移植, 2021, 12(1): 8-14, 28. |
| 56. | 中國醫師協會器官移植醫師分會, 中華醫學會器官移植學分會肝移植學組. 中國肝癌肝移植臨床實踐指南 (2021版). 中華移植雜志 (電子版), 2021, 15(6): 321-328. |
| 57. | Tan PS, Muthiah MD, Koh T, et al. Asian liver transplant network clinical guidelines on immunosuppression in liver transplantation. Transplantation, 2019, 103(3): 470-480. |
| 58. | European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. J Hepatol, 2016, 64(2): 433-485. |
| 59. | De Simone P, Fagiuoli S, Cescon M, et al. Use of everolimus in liver transplantation: recommendations from a working group. Transplantation, 2017, 101(2): 239-251. |
| 60. | Jan MY, Patidar KR, Ghabril MS, et al. Optimization and protection of kidney health in liver transplant recipients: intra- and postoperative approaches. Transplantation, 2025, 109(6): 938-944. |
| 61. | Yakupoglu YK, Buell JF, Woodle S, et al. Individualization of immunosuppressive therapy. Ⅲ. Sirolimus associated with a reduced incidence of malignancy. Transplant Proc, 2006, 38(2): 358-361. |
| 62. | McKenna GJ, Trotter JF, Klintmalm E, et al. Limiting hepatitis C virus progression in liver transplant recipients using sirolimus-based immunosuppression. Am J Transplant, 2011, 11(11): 2379-2387. |
| 63. | Kelly MA, Kaplan M, Nydam T, et al. Sirolimus reduces the risk of significant hepatic fibrosis after liver transplantation for hepatitis C virus: a single-center experience. Transplant Proc, 2013, 45(9): 3325-3328. |
| 64. | Boudjema K, Camus C, Saliba F, et al. Reduced-dose tacrolimus with mycophenolate mofetil vs. standard-dose tacrolimus in liver transplantation: a randomized study. Am J Transplant, 2011, 11(5): 965-976. |
| 65. | Buchholz BM, Ferguson JW, Schnitzbauer AA, et al. Randomized sirolimus-based early calcineurin inhibitor reduction in liver transplantation: impact on renal function. Transplantation, 2020, 104(5): 1003-1018. |
| 66. | Miyata H, Morita Y, Kumar A. A systematic review of the literature on chronic kidney disease following liver transplantation. Ann Transplant, 2022, 27: e935170. doi: 10.12659/aot.935170. |
| 67. | Peng JC, Li YJ, Wang J, et al. Incidence of chronic kidney disease after orthotopic liver transplantation in a Chinese cohort. Clin Exp Nephrol, 2020, 24(9): 806-812. |
| 68. | Fabrizi F, Dixit V, Martin P, et al. Chronic kidney disease after liver transplantation: recent evidence. Int J Artif Organs, 2010, 33(11): 803-811. |
| 69. | Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int, 2024, 105(4S): S117-S314. |
| 70. | Patel HK, Patel A, Abouljoud M, et al. Survival after liver transplantation in patients who develop renal insufficiency. Transplant Proc, 2010, 42(10): 4167-4170. |
| 71. | McGuire BM, Rosenthal P, Brown CC, et al. Long-term management of the liver transplant patient: recommendations for the primary care doctor. Am J Transplant, 2009, 9(9): 1988-2003. |
| 72. | Lucey MR, Terrault N, Ojo L, et al. Long-term management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Liver Transpl, 2013, 19(1): 3-26. |
| 73. | Allen AM, Kim WR, Therneau TM, et al. Chronic kidney disease and associated mortality after liver transplantation–a time-dependent analysis using measured glomerular filtration rate. J Hepatol, 2014, 61(2): 286-292. |
| 74. | Grigg SE, Sarri GL, Gow PJ, et al. Systematic review with meta-analysis: sirolimus- or everolimus-based immunosuppression following liver transplantation for hepatocellular carcinoma. Aliment Pharmacol Ther, 2019, 49(10): 1260-1273. |
| 75. | 何倩穎, 王衛星. 依維莫司在肝細胞癌肝移植術后的臨床應用. 中國普外基礎與臨床雜志, 2020, 27(6): 759-762. |
| 76. | Lee SG, Jeng LB, Saliba F, et al. Efficacy and safety of everolimus with reduced tacrolimus in liver transplant recipients: 24-month results from the pooled analysis of 2 randomized controlled trials. Transplantation, 2021, 105(7): 1564-1575. |
| 77. | Saliba F, Dharancy S, Salamé E, et al. Time to conversion to an everolimus-based regimen: renal outcomes in liver transplant recipients from the EVEROLIVER Registry. Liver Transpl, 2020, 26(11): 1465-1476. |
| 78. | Tsai KF, Li LC, Hsu CN, et al. Effects of conversion from calcineurin inhibitors to sirolimus or everolimus on renal function and possible mechanisms in liver transplant recipients. J Clin Pharmacol, 2019, 59(3): 326-334. |
| 79. | 中華醫學會器官移植學分會, 中國醫師協會器官移植醫師分會. 中國肝移植受者腎損傷管理臨床實踐指南 (2023版). 中國醫學前沿雜志 (電子版), 2024, 16(8): 1-13. |
| 80. | 中華醫學會器官移植學分會, 中國醫師協會器官移植醫師分會, 上海醫藥行業協會, 等. 中國肝、腎移植受者霉酚酸類藥物應用專家共識 (2023版). 上海醫藥, 2023, 44(19): 3-19, 47. |
| 81. | Fischer L, Saliba F, Kaiser GM, et al. Three-year outcomes in de novo liver transplant patients receiving everolimus with reduced tacrolimus: follow-up results from a randomized, multicenter study. Transplantation, 2015, 99(7): 1455-1462. |
| 82. | Sapisochin G, Lee WC, Joo DJ, et al. Long-term effects of everolimus-facilitated tacrolimus reduction in living-donor liver transplant recipients with hepatocellular carcinoma. Ann Transplant, 2022, 27: e937988. doi: 10.12659/aot.937988. |
| 83. | Trune?ka P, Klempnauer J, Bechstein WO, et al. Renal function in de novo liver transplant recipients receiving different prolonged-release tacrolimus regimens-the DIAMOND Study. Am J Transplant, 2015, 15(7): 1843-1854. |
| 84. | Calmus Y, Kamar N, Gugenheim J, et al. Assessing renal function with daclizumab induction and delayed tacrolimus introduction in liver transplant recipients. Transplantation, 2010, 89(12): 1504-1510. |
| 85. | Neuberger JM, Mamelok RD, Neuhaus P, et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’ study. Am J Transplant, 2009, 9(2): 327-336. |
| 86. | Yoshida EM, Marotta PJ, Greig PD, et al. Evaluation of renal function in liver transplant recipients receiving daclizumab (Zenapax), mycophenolate mofetil, and a delayed, low-dose tacrolimus regimen vs. a standard-dose tacrolimus and mycophenolate mofetil regimen: a multicenter randomized clinical trial. Liver Transpl, 2005, 11(9): 1064-1072. |
| 87. | Nair A, Coromina Hernandez L, Shah S, et al. Induction therapy with antithymocyte globulin and delayed calcineurin inhibitor initiation for renal protection in liver transplantation: a multicenter randomized controlled phase Ⅱ-B trial. Transplantation, 2022, 106(5): 997-1003. |
| 88. | Busaidy NL, Farooki A, Dowlati A, et al. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J Clin Oncol, 2012, 30(23): 2919-2928. |
| 89. | Houde VP, Br?lé S, Festuccia WT, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 2010, 59(6): 1338-1348. |
| 90. | Mathis AS, Jin S, Friedman GS, et al. The pharmacodynamic effects of sirolimus and sirolimus-calcineurin inhibitor combinations on macrophage scavenger and nuclear hormone receptors. J Pharm Sci, 2007, 96(1): 209-222. |
| 91. | Ventura-Aguiar P, Campistol JM, Diekmann F. Safety of mTOR inhibitors in adult solid organ transplantation. Expert Opin Drug Saf, 2016, 15(3): 303-319. |
| 92. | Agarwal A, Prasad GV. Post-transplant dyslipidemia: mechanisms, diagnosis and management. World J Transplant, 2016, 6(1): 125-134. |
| 93. | Nguyen LS, Vautier M, Allenbach Y, et al. Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf, 2019, 42(7): 813-825. |
| 94. | Sofroniadou S, Kassimatis T, Goldsmith D. Anaemia, microcytosis and sirolimus–is iron the missing link?. Nephrol Dial Transplant, 2010, 25(5): 1667-1675. |
| 95. | McDonald MA, Gustafsson F, Almasood A, et al. Sirolimus is associated with impaired hematopoiesis in heart transplant patients? A retrospective analysis. Transplant Proc, 2010, 42(7): 2693-2696. |
| 96. | Cooper M, Wiseman AC, Zibari G, et al. Wound events in kidney transplant patients receiving de novo everolimus: a pooled analysis of three randomized controlled trials. Clin Transplant, 2013, 27(6): E625-E635. |
| 97. | R?ine E, Bj?rk IT, Oyen O. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. Transplant Proc, 2010, 42(7): 2542-2546. |
| 98. | Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev (Orlando), 2014, 28(3): 126-133. |
| 99. | Campistol JM, de Fijter JW, Flechner SM, et al. mTOR inhibitor-associated dermatologic and mucosal problems. Clin Transplant, 2010, 24(2): 149-156. |
| 100. | Mahé E, Morelon E, Lechaton S, et al. Cutaneous adverse events in renal transplant recipients receiving sirolimus-based therapy. Transplantation, 2005, 79(4): 476-482. |
| 101. | Roberts RJ, Wells AC, Unitt E, et al. Sirolimus-induced pneumonitis following liver transplantation. Liver Transpl, 2007, 13(6): 853-856. |
| 102. | Albiges L, Chamming’s F, Duclos B, et al. Incidence and management of mTOR inhibitor-associated pneumonitis in patients with metastatic renal cell carcinoma. Ann Oncol, 2012, 23(8): 1943-1953. |
| 103. | Cinà DP, Onay T, Paltoo A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol, 2012, 23(3): 412-420. |
| 104. | Wadei HM, Zaky ZS, Keaveny AP, et al. Proteinuria following sirolimus conversion is associated with deterioration of kidney function in liver transplant recipients. Transplantation, 2012, 93(10): 1006-1012. |
| 105. | Müller-Krebs S, Weber L, Tsobaneli J, et al. Cellular effects of everolimus and sirolimus on podocytes. PLoS One, 2013, 8(11): e80340. doi: 10.1371/journal.pone.0080340. doi: 10.1371/journal.pone.0080340. |
| 106. | Hanna RM, Yanny B, Arman F, et al. Everolimus worsening chronic proteinuria in patient with diabetic nephropathy post liver transplantation. Saudi J Kidney Dis Transpl, 2019, 30(4): 989-994. |
- 1. 中華醫學會器官移植學分會, 中國醫師協會器官移植醫師分會. 中國肝移植受者腎損傷管理臨床實踐指南 (2023版). 中華移植雜志 (電子版), 2023, 17(6): 321-331.
- 2. Pacheco MP, Carneiro-D’Albuquerque LA, Mazo DF. Current aspects of renal dysfunction after liver transplantation. World J Hepatol, 2022, 14(1): 45-61.
- 3. Cullaro G. Timing of acute kidney injury recovery a promising indicator of outcomes after liver transplantation. Transplantation, 2022, 106(4): 700-701.
- 4. Del Toro-Cisneros N, Antiga-López FJ, Felix-Bauer KC, et al. Development of a prediction index for persistent acute kidney injury following orthotopic liver transplant. Ann Hepatol, 2025, 30(2): 101923. doi: 10.1016/j.aohep.2025.101923.
- 5. Berkowitz RJ, Engoren MC, Mentz G, et al. Intraoperative risk factors of acute kidney injury after liver transplantation. Liver Transpl, 2022, 28(7): 1207-1223.
- 6. Nashan B, Schemmer P, Braun F, et al. Early everolimus-facilitated reduced tacrolimus in liver transplantation: results from the randomized HEPHAISTOS Trial. Liver Transpl, 2022, 28(6): 998-1010.
- 7. Watson CJ, Gimson AE, Alexander GJ, et al. A randomized controlled trial of late conversion from calcineurin inhibitor (CNI)-based to sirolimus-based immunosuppression in liver transplant recipients with impaired renal function. Liver Transpl, 2007, 13(12): 1694-1702.
- 8. Durand F, Francoz C, Asrani SK, et al. Acute kidney injury after liver transplantation. Transplantation, 2018, 102(10): 1636-1649.
- 9. Parajuli S, Foley D, Djamali A, et al. Renal function and transplantation in liver disease. Transplantation, 2015, 99(9): 1756-1764.
- 10. Park CS, Yoon YI, Kim N, et al. Analysis of outcomes and renal recovery after adult living-donor liver transplantation among recipients with hepatorenal syndrome. Am J Transplant, 2022, 22(10): 2381-2391.
- 11. Chen YC, Lin HY, Li CY, et al. A nationwide cohort study suggests that hepatitis C virus infection is associated with increased risk of chronic kidney disease. Kidney Int, 2014, 85(5): 1200-1207.
- 12. Liu J, Chen R, Zhou S, et al. Acute kidney injury is associated with liver-related outcomes in patients with hepatitis B virus infection: a retrospective cohort study. BMC Nephrol, 2025, 26(1): 12. doi: 10.1186/s12882-024-03925-z.
- 13. Nadim MK, Kellum JA, Forni L, et al. Acute kidney injury in patients with cirrhosis: Acute Disease Quality Initiative (ADQI) and International Club of Ascites (ICA) joint multidisciplinary consensus meeting. J Hepatol, 2024, 81(1): 163-183.
- 14. Kim WH, Oh HW, Yang SM, et al. Intraoperative hemodynamic parameters and acute kidney injury after living donor liver transplantation. Transplantation, 2019, 103(9): 1877-1886.
- 15. Pandey CK, Singh A, Kajal K, et al. Intraoperative blood loss in orthotopic liver transplantation: the predictive factors. World J Gastrointest Surg, 2015, 7(6): 86-93.
- 16. Caragata R, Emerson S, Santema ML, et al. Intraoperative hypotension and the risk of acute kidney injury following liver transplantation. Clin Transplant, 2023, 37(10): e15053. doi: 10.1111/ctr.15053.
- 17. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med, 2007, 357(25): 2562-2575.
- 18. Pascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol, 2018, 29(7): 1979-1991.
- 19. Lin M, Mittal S, Sahebjam F, et al. Everolimus with early withdrawal or reduced-dose calcineurin inhibitors improves renal function in liver transplant recipients: a systematic review and meta-analysis. Clin Transplant, 2017, 31(2). doi: 10.1111/ctr.12872.
- 20. Nashan B, Schemmer P, Braun F, et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: study protocol for a randomized controlled trial. Trials, 2015, 16: 118. doi: 10.1186/s13063-015-0626-0.
- 21. Sang BH, Bang JY, Song JG, et al. Hypoalbuminemia within two postoperative days is an independent risk factor for acute kidney injury following living donor liver transplantation: a propensity score analysis of 998 consecutive patients. Crit Care Med, 2015, 43(12): 2552-2561.
- 22. Kalisvaart M, Schlegel A, Umbro I, et al. The impact of combined warm ischemia time on development of acute kidney injury in donation after circulatory death liver transplantation: stay within the golden hour. Transplantation, 2018, 102(5): 783-793.
- 23. Leithead JA, Tariciotti L, Gunson B, et al. Donation after cardiac death liver transplant recipients have an increased frequency of acute kidney injury. Am J Transplant, 2012, 12(4): 965-975.
- 24. He ZL, Zhou JB, Liu ZK, et al. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 222-231.
- 25. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol, 2009, 9(5): 324-337.
- 26. Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther, 2020, 215: 107623. doi: 10.1016/j.pharmthera.2020.107623.
- 27. Dumont FJ, Su Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci, 1996, 58(5): 373-395.
- 28. Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol, 2009, 36 Suppl 3: S3-S17.
- 29. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab, 2014, 19(3): 373-379.
- 30. Schildknecht A, Brauer S, Brenner C, et al. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci U S A, 2010, 107(1): 199-203.
- 31. Gedaly R, De Stefano F, Turcios L, et al. mTOR inhibitor everolimus in regulatory T cell expansion for clinical application in transplantation. Transplantation, 2019, 103(4): 705-715.
- 32. Levitsky J, Burrell BE, Kanaparthi S, et al. Immunosuppression withdrawal in liver transplant recipients on sirolimus. Hepatology, 2020, 72(2): 569-583.
- 33. Rozen-Zvi B, Hayashida T, Hubchak SC, et al. TGF-β/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1α expression. Am J Physiol Renal Physiol, 2013, 305(4): F485-F494.
- 34. Liu Y. Rapamycin and chronic kidney disease: beyond the inhibition of inflammation. Kidney Int, 2006, 69(11): 1925-1927.
- 35. 畢華強, 劉輝, 張曦, 等. Akt/mTOR信號在轉化生長因子-β誘導動脈內皮間質轉化中的作用研究. 中國普外基礎與臨床雜志, 2017, 24(7): 808-812.
- 36. Vizza D, Perri A, Toteda G, et al. Rapamycin-induced autophagy protects proximal tubular renal cells against proteinuric damage through the transcriptional activation of the nerve growth factor receptor NGFR. Autophagy, 2018, 14(6): 1028-1042.
- 37. Infante B, Bellanti F, Correale M, et al. mTOR inhibition improves mitochondria function/biogenesis and delays cardiovascular aging in kidney transplant recipients with chronic graft dysfunction. Aging (Albany NY), 2021, 13(6): 8026-8039.
- 38. Granata S, Dalla Gassa A, Carraro A, et al. Sirolimus and everolimus pathway: reviewing candidate genes influencing their intracellular effects. Int J Mol Sci, 2016, 17(5): 735. doi: 10.3390/ijms17050735.
- 39. Klawitter J, Nashan B, Christians U. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf, 2015, 14(7): 1055-1070.
- 40. Hilmi IA, Damian D, Al-Khafaji A, et al. Acute kidney injury following orthotopic liver transplantation: incidence, risk factors, and effects on patient and graft outcomes. Br J Anaesth, 2015, 114(6): 919-926.
- 41. Trinh E, Alam A, Tchervenkov J, et al. Impact of acute kidney injury following liver transplantation on long-term outcomes. Clin Transplant, 2017, 31(1): e12863. doi: 10.1111/ctr.12863. doi: 10.1111/ctr.12863.
- 42. Reich DJ, Clavien PA, Hodge EE, et al. Mycophenolate mofetil for renal dysfunction in liver transplant recipients on cyclosporine or tacrolimus: randomized, prospective, multicenter pilot study results. Transplantation, 2005, 80(1): 18-25.
- 43. Pageaux GP, Rostaing L, Calmus Y, et al. Mycophenolate mofetil in combination with reduction of calcineurin inhibitors for chronic renal dysfunction after liver transplantation. Liver Transpl, 2006, 12(12): 1755-1760.
- 44. Créput C, Blandin F, Deroure B, et al. Long-term effects of calcineurin inhibitor conversion to mycophenolate mofetil on renal function after liver transplantation. Liver Transpl, 2007, 13(7): 1004-1010.
- 45. Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2016 annual data report: liver. Am J Transplant, 2018, 18 Suppl 1: 172-253.
- 46. 中國器官移植發展基金會器官移植受者健康管理專家委員會, 中國醫師協會器官移植醫師分會, 中華醫學會器官移植學分會, 等. 肝移植受者雷帕霉素靶蛋白抑制劑臨床應用中國專家共識 (2023版). 中華移植雜志 (電子版), 2023, 17(4): 193-204.
- 47. Martín LG, Vázquez-Garza JN, Grande AM, et al. Postreperfusion syndrome in liver transplant: a risk factor for acute kidney failure: a retrospective analysis. Transplant Proc, 2022, 54(8): 2277-2284.
- 48. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract, 2012, 120(4): c179-c184.
- 49. De Simone P, Metselaar HJ, Fischer L, et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transpl, 2009, 15(10): 1262-1269.
- 50. Abdelmalek MF, Humar A, Stickel F, et al. Sirolimus conversion regimen versus continued calcineurin inhibitors in liver allograft recipients: a randomized trial. Am J Transplant, 2012, 12(3): 694-705.
- 51. Asrani SK, Wiesner RH, Trotter JF, et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000-2003 phase Ⅱ prospective randomized trial. Am J Transplant, 2014, 14(2): 356-366.
- 52. De Simone P, Nevens F, De Carlis L, et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant, 2012, 12(11): 3008-3020.
- 53. Rodríguez-Perálvarez M, Guerrero M, Barrera L, et al. Impact of early initiated everolimus on the recurrence of hepatocellular carcinoma after liver transplantation. Transplantation, 2018, 102(12): 2056-2064.
- 54. 中國器官移植發展基金會器官移植受者健康管理專家委員會, 中國醫師協會器官移植醫師分會, 中華醫學會器官移植學分會, 等. 肝移植受者雷帕霉素靶蛋白抑制劑臨床應用中國專家共識 (2023 版). 肝膽胰外科雜志, 2023, 35(9): 513-524.
- 55. 中華醫學會器官移植學分會. 中國肝移植免疫抑制治療與排斥反應診療規范 (2019版). 器官移植, 2021, 12(1): 8-14, 28.
- 56. 中國醫師協會器官移植醫師分會, 中華醫學會器官移植學分會肝移植學組. 中國肝癌肝移植臨床實踐指南 (2021版). 中華移植雜志 (電子版), 2021, 15(6): 321-328.
- 57. Tan PS, Muthiah MD, Koh T, et al. Asian liver transplant network clinical guidelines on immunosuppression in liver transplantation. Transplantation, 2019, 103(3): 470-480.
- 58. European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. J Hepatol, 2016, 64(2): 433-485.
- 59. De Simone P, Fagiuoli S, Cescon M, et al. Use of everolimus in liver transplantation: recommendations from a working group. Transplantation, 2017, 101(2): 239-251.
- 60. Jan MY, Patidar KR, Ghabril MS, et al. Optimization and protection of kidney health in liver transplant recipients: intra- and postoperative approaches. Transplantation, 2025, 109(6): 938-944.
- 61. Yakupoglu YK, Buell JF, Woodle S, et al. Individualization of immunosuppressive therapy. Ⅲ. Sirolimus associated with a reduced incidence of malignancy. Transplant Proc, 2006, 38(2): 358-361.
- 62. McKenna GJ, Trotter JF, Klintmalm E, et al. Limiting hepatitis C virus progression in liver transplant recipients using sirolimus-based immunosuppression. Am J Transplant, 2011, 11(11): 2379-2387.
- 63. Kelly MA, Kaplan M, Nydam T, et al. Sirolimus reduces the risk of significant hepatic fibrosis after liver transplantation for hepatitis C virus: a single-center experience. Transplant Proc, 2013, 45(9): 3325-3328.
- 64. Boudjema K, Camus C, Saliba F, et al. Reduced-dose tacrolimus with mycophenolate mofetil vs. standard-dose tacrolimus in liver transplantation: a randomized study. Am J Transplant, 2011, 11(5): 965-976.
- 65. Buchholz BM, Ferguson JW, Schnitzbauer AA, et al. Randomized sirolimus-based early calcineurin inhibitor reduction in liver transplantation: impact on renal function. Transplantation, 2020, 104(5): 1003-1018.
- 66. Miyata H, Morita Y, Kumar A. A systematic review of the literature on chronic kidney disease following liver transplantation. Ann Transplant, 2022, 27: e935170. doi: 10.12659/aot.935170.
- 67. Peng JC, Li YJ, Wang J, et al. Incidence of chronic kidney disease after orthotopic liver transplantation in a Chinese cohort. Clin Exp Nephrol, 2020, 24(9): 806-812.
- 68. Fabrizi F, Dixit V, Martin P, et al. Chronic kidney disease after liver transplantation: recent evidence. Int J Artif Organs, 2010, 33(11): 803-811.
- 69. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int, 2024, 105(4S): S117-S314.
- 70. Patel HK, Patel A, Abouljoud M, et al. Survival after liver transplantation in patients who develop renal insufficiency. Transplant Proc, 2010, 42(10): 4167-4170.
- 71. McGuire BM, Rosenthal P, Brown CC, et al. Long-term management of the liver transplant patient: recommendations for the primary care doctor. Am J Transplant, 2009, 9(9): 1988-2003.
- 72. Lucey MR, Terrault N, Ojo L, et al. Long-term management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Liver Transpl, 2013, 19(1): 3-26.
- 73. Allen AM, Kim WR, Therneau TM, et al. Chronic kidney disease and associated mortality after liver transplantation–a time-dependent analysis using measured glomerular filtration rate. J Hepatol, 2014, 61(2): 286-292.
- 74. Grigg SE, Sarri GL, Gow PJ, et al. Systematic review with meta-analysis: sirolimus- or everolimus-based immunosuppression following liver transplantation for hepatocellular carcinoma. Aliment Pharmacol Ther, 2019, 49(10): 1260-1273.
- 75. 何倩穎, 王衛星. 依維莫司在肝細胞癌肝移植術后的臨床應用. 中國普外基礎與臨床雜志, 2020, 27(6): 759-762.
- 76. Lee SG, Jeng LB, Saliba F, et al. Efficacy and safety of everolimus with reduced tacrolimus in liver transplant recipients: 24-month results from the pooled analysis of 2 randomized controlled trials. Transplantation, 2021, 105(7): 1564-1575.
- 77. Saliba F, Dharancy S, Salamé E, et al. Time to conversion to an everolimus-based regimen: renal outcomes in liver transplant recipients from the EVEROLIVER Registry. Liver Transpl, 2020, 26(11): 1465-1476.
- 78. Tsai KF, Li LC, Hsu CN, et al. Effects of conversion from calcineurin inhibitors to sirolimus or everolimus on renal function and possible mechanisms in liver transplant recipients. J Clin Pharmacol, 2019, 59(3): 326-334.
- 79. 中華醫學會器官移植學分會, 中國醫師協會器官移植醫師分會. 中國肝移植受者腎損傷管理臨床實踐指南 (2023版). 中國醫學前沿雜志 (電子版), 2024, 16(8): 1-13.
- 80. 中華醫學會器官移植學分會, 中國醫師協會器官移植醫師分會, 上海醫藥行業協會, 等. 中國肝、腎移植受者霉酚酸類藥物應用專家共識 (2023版). 上海醫藥, 2023, 44(19): 3-19, 47.
- 81. Fischer L, Saliba F, Kaiser GM, et al. Three-year outcomes in de novo liver transplant patients receiving everolimus with reduced tacrolimus: follow-up results from a randomized, multicenter study. Transplantation, 2015, 99(7): 1455-1462.
- 82. Sapisochin G, Lee WC, Joo DJ, et al. Long-term effects of everolimus-facilitated tacrolimus reduction in living-donor liver transplant recipients with hepatocellular carcinoma. Ann Transplant, 2022, 27: e937988. doi: 10.12659/aot.937988.
- 83. Trune?ka P, Klempnauer J, Bechstein WO, et al. Renal function in de novo liver transplant recipients receiving different prolonged-release tacrolimus regimens-the DIAMOND Study. Am J Transplant, 2015, 15(7): 1843-1854.
- 84. Calmus Y, Kamar N, Gugenheim J, et al. Assessing renal function with daclizumab induction and delayed tacrolimus introduction in liver transplant recipients. Transplantation, 2010, 89(12): 1504-1510.
- 85. Neuberger JM, Mamelok RD, Neuhaus P, et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’ study. Am J Transplant, 2009, 9(2): 327-336.
- 86. Yoshida EM, Marotta PJ, Greig PD, et al. Evaluation of renal function in liver transplant recipients receiving daclizumab (Zenapax), mycophenolate mofetil, and a delayed, low-dose tacrolimus regimen vs. a standard-dose tacrolimus and mycophenolate mofetil regimen: a multicenter randomized clinical trial. Liver Transpl, 2005, 11(9): 1064-1072.
- 87. Nair A, Coromina Hernandez L, Shah S, et al. Induction therapy with antithymocyte globulin and delayed calcineurin inhibitor initiation for renal protection in liver transplantation: a multicenter randomized controlled phase Ⅱ-B trial. Transplantation, 2022, 106(5): 997-1003.
- 88. Busaidy NL, Farooki A, Dowlati A, et al. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway. J Clin Oncol, 2012, 30(23): 2919-2928.
- 89. Houde VP, Br?lé S, Festuccia WT, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 2010, 59(6): 1338-1348.
- 90. Mathis AS, Jin S, Friedman GS, et al. The pharmacodynamic effects of sirolimus and sirolimus-calcineurin inhibitor combinations on macrophage scavenger and nuclear hormone receptors. J Pharm Sci, 2007, 96(1): 209-222.
- 91. Ventura-Aguiar P, Campistol JM, Diekmann F. Safety of mTOR inhibitors in adult solid organ transplantation. Expert Opin Drug Saf, 2016, 15(3): 303-319.
- 92. Agarwal A, Prasad GV. Post-transplant dyslipidemia: mechanisms, diagnosis and management. World J Transplant, 2016, 6(1): 125-134.
- 93. Nguyen LS, Vautier M, Allenbach Y, et al. Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf, 2019, 42(7): 813-825.
- 94. Sofroniadou S, Kassimatis T, Goldsmith D. Anaemia, microcytosis and sirolimus–is iron the missing link?. Nephrol Dial Transplant, 2010, 25(5): 1667-1675.
- 95. McDonald MA, Gustafsson F, Almasood A, et al. Sirolimus is associated with impaired hematopoiesis in heart transplant patients? A retrospective analysis. Transplant Proc, 2010, 42(7): 2693-2696.
- 96. Cooper M, Wiseman AC, Zibari G, et al. Wound events in kidney transplant patients receiving de novo everolimus: a pooled analysis of three randomized controlled trials. Clin Transplant, 2013, 27(6): E625-E635.
- 97. R?ine E, Bj?rk IT, Oyen O. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. Transplant Proc, 2010, 42(7): 2542-2546.
- 98. Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev (Orlando), 2014, 28(3): 126-133.
- 99. Campistol JM, de Fijter JW, Flechner SM, et al. mTOR inhibitor-associated dermatologic and mucosal problems. Clin Transplant, 2010, 24(2): 149-156.
- 100. Mahé E, Morelon E, Lechaton S, et al. Cutaneous adverse events in renal transplant recipients receiving sirolimus-based therapy. Transplantation, 2005, 79(4): 476-482.
- 101. Roberts RJ, Wells AC, Unitt E, et al. Sirolimus-induced pneumonitis following liver transplantation. Liver Transpl, 2007, 13(6): 853-856.
- 102. Albiges L, Chamming’s F, Duclos B, et al. Incidence and management of mTOR inhibitor-associated pneumonitis in patients with metastatic renal cell carcinoma. Ann Oncol, 2012, 23(8): 1943-1953.
- 103. Cinà DP, Onay T, Paltoo A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol, 2012, 23(3): 412-420.
- 104. Wadei HM, Zaky ZS, Keaveny AP, et al. Proteinuria following sirolimus conversion is associated with deterioration of kidney function in liver transplant recipients. Transplantation, 2012, 93(10): 1006-1012.
- 105. Müller-Krebs S, Weber L, Tsobaneli J, et al. Cellular effects of everolimus and sirolimus on podocytes. PLoS One, 2013, 8(11): e80340. doi: 10.1371/journal.pone.0080340. doi: 10.1371/journal.pone.0080340.
- 106. Hanna RM, Yanny B, Arman F, et al. Everolimus worsening chronic proteinuria in patient with diabetic nephropathy post liver transplantation. Saudi J Kidney Dis Transpl, 2019, 30(4): 989-994.

