| 1. |
Gimbrone MA, García-Carde?a G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res, 2016, 118(4): 620-636.
|
| 2. |
Storch AS, Rocha HNM, Garcia VP, et al. Oscillatory shear stress induces hemostatic imbalance in healthy men. Thromb Res, 2018, 170: 119-125.
|
| 3. |
Rahmati N, Pouraliakbar H, Eskandari A, et al. The impact of stenosis severity on hemodynamic parameters in the iliac artery: a fluid-structure interaction study. Bioengineering (Basel), 2025, 12(10): 1042. doi: 10.3390/bioengineering12101042.
|
| 4. |
Soni P, Bhattacharyya A, Usmani AY, et al. Pulsatile flow dynamics in an artery with multiple pathologies: a fluid-structure interaction study. Physics of Fluids, 2025, 37(7). doi: 10.1063/5.0263599.
|
| 5. |
Qiu Y, Wang J, Zhao J, et al. Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics. Eur J Vasc Endovasc Surg, 2022, 64(2): 155-164.
|
| 6. |
Tan FPP, Borghi A, Mohiaddin RH, et al. Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Computers Structures, 2009, 87(11-12): 680-690.
|
| 7. |
Costopoulos C, Huang Y, Brown AJ, et al. Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging, 2017, 10(12): 1472-1483.
|
| 8. |
Conway C, McGarry JP, Edelman ER, et al. Numerical simulation of stent angioplasty with predilation: an investigation into lesion constitutive representation and calcification influence. Ann Biomed Eng, 2017, 45(9): 2244-2252.
|
| 9. |
Huang T, Qi X, Cao L, et al. Regional stiffness and hardening indices: new indicators derived from multidimensional dynamic CTA for aneurysm risk assessment. Adv Sci (Weinh), 2024, 11(47): e2400653. doi: 10.1002/advs.202400653.
|
| 10. |
Grossi B, Barati S, Ramella A, et al. Validation evidence with experimental and clinical data to establish credibility of TAVI patient-specific simulations. Comput Biol Med, 2024, 182: 109159. doi: 10.1016/j.compbiomed.2024.109159.
|
| 11. |
Wang Q, Kodali S, Primiano C, et al. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech Model Mechanobiol, 2015, 14(1): 29-38.
|
| 12. |
Schultz C, Rodriguez-Olivares R, Bosmans J, et al. Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve. EuroIntervention, 2016, 11(9): 1044-1052.
|
| 13. |
Avril S, Gee MW, Hemmler A, et al. Patient-specific computational modeling of endovascular aneurysm repair: state of the art and future directions. Int J Numer Method Biomed Eng, 2021, 37(12): e3529. doi: 10.1002/cnm.3529.
|
| 14. |
Liang S, Jia H, Zhang X, et al. In-vitro and in-silico haemodynamic analyses of a novel embedded iliac branch device. Front Cardiovasc Med, 2022, 9: 828910. doi: 10.3389/fcvm.2022.828910.
|
| 15. |
Ma S, Feng H, Chen Y, et al. A comparative study on the fatigue strength and service life of lower limb arterial stent at different stenosis rates. J Mech Med Biol, 2023, 23(3): 2350019.
|
| 16. |
Feng H, Shi X, Wang T, et al. A comparative study on the deformation behavior and mechanical properties of new lower extremity arterial stents. Comput Methods Programs Biomed, 2024, 247: 108094. doi: 10.1016/j.cmpb.2024.108094.
|
| 17. |
Nematzadeh F, Zolfaghari M, Seyed-Salehi M, et al. Effect of material properties on femoral artery SMA stent performance: a numerical evaluation. Arch Appl Mech, 2025, 95(8): 189.
|
| 18. |
Naghipoor J, Rabczuk T. A mechanistic model for drug release from PLGA-based drug eluting stent: a computational study. Comput Biol Med, 2017, 90: 15-22.
|
| 19. |
Lee S, Lee CW, Kim CS. FEA study on the stress distributions in the polymer coatings of cardiovascular drug-eluting stent medical devices. Ann Biomed Eng, 2014, 42(9): 1952-1965.
|
| 20. |
Donik ?, Ne?emer B, Glode? S, et al. Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure. Engineering Failure Analysis, 2022, 137: 106267. doi: 10.1016/j.engfailanal.2022.106267.
|
| 21. |
Michard F, Mulder MP, Gonzalez F, et al. AI for the hemodynamic assessment of critically ill and surgical patients: focus on clinical applications. Ann Intensive Care, 2025, 15(1): 26. doi: 10.1186/s13613-025-01448-w.
|
| 22. |
Buckler AJ, Karl?f E, Lengquist M, et al. Virtual transcriptomics: noninvasive phenotyping of atherosclerosis by decoding plaque biology from computed tomography angiography imaging. Arterioscler Thromb Vasc Biol, 2021, 41(5): 1738-1750.
|