- 1. Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P. R. China;
- 2. Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P. R. China;
Natural language processing (NLP) is the embodiment of computer intelligence in acquiring knowledge, understanding, processing and expressing consciously and actively. It is the scientific key to promoting the informatization of medical practice and research. This paper reviews the development history and research basis of NLP, and focuses on the current application of NLP and large language models in biomedicine and traditional Chinese medicine (TCM), including the intelligent reading, information extraction and feedback of medical texts and ancient books of TCM, as well as the construction of medical knowledge graph and question-answering system. NLP is the technical support to explore the treasure house of TCM, which is of great practical significance to further promote the development of efficient and high-quality core values of TCM and to improve the service capacity.
Citation: HU Jiayuan, QIU Ruijin, SUN Yang, SHANG Hongcai. Natural language processing and its application in the medical field. Chinese Journal of Evidence-Based Medicine, 2024, 24(10): 1205-1211. doi: 10.7507/1672-2531.202311178 Copy
Copyright ? the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved
| 1. | Manaris B. Natural language processing: a human-computer interaction perspective. Advance Comput, 1998, 47(8): 1-66. |
| 2. | 馮志偉. 自然語言處理的歷史與現狀. 中國外語, 2008, (1): 14-22. |
| 3. | 李宇明. 語言學是一個學科群. 語言戰略研究, 2018, 3(1): 15-24. |
| 4. | Booth AD, Brandwood L, Cleave JP. Mechanical resolution of linguistic problems. 1958. |
| 5. | Searle JR. Minds, brains, and programs. Behav Brain Sci, 1980, 3(3): 417-457. |
| 6. | 王大鵬. 國內語料庫發展現存問題與分析. 渤海大學學報(哲學社會科學版), 2010, 32(3): 137-140. |
| 7. | 詹衛東, 郭銳, 常寶寶, 等. 北京大學CCL語料庫的研制. 語料庫語言學, 2019, 6(1): 71-86, 116. |
| 8. | 北京大學開放研究數據平臺. 北京大學計算語言學研究所: 綜合型語言知識庫(CLKB). |
| 9. | 柏曉靜, 俞士汶, 朱學鋒. 自然語言處理中的技術評測及關于英語專業考試的思考. 外語電化教學, 2010, (1): 3-9, 18. |
| 10. | 李素建, 王厚峰, 俞士汶, 等. 關鍵詞自動標引的最大熵模型應用研究. 計算機學報, 2004, (9): 1192-1197. |
| 11. | 宗成慶. 統計自然語言處理. 北京: 清華大學出版社, 2013: 8. |
| 12. | Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc, 2018, 25(10): 1419-1428. |
| 13. | 郁林音. 譯者視角的當代機器翻譯發展綜述. 現代交際, 2020, (4): 71-73. |
| 14. | Zhang J, Zong C. Deep neural networks in machine translation: an overview. IEEE Intel Sys, 2015, 30(5): 16-25. |
| 15. | Wu Y, Schuster M, Chen Z, et al. Google's neural machine translation system: bridging the gap between human and machine translation. ar Xiv preprint ar Xiv, 2016: 1609-8144. |
| 16. | 中國新聞網. 網易有道入圍工信部新一代AI產業創新重點任務揭榜名單. 2020. |
| 17. | 汪少敏, 楊迪, 任華. 基于深度學習的文本分類系統關鍵技術研究與模型驗證. 電信科學, 2018, 34(12): 117-124. |
| 18. | Miyazaki K, Ida M. Construction of consistency judgment system of diploma policy and curriculum policy using character‐level CNN. Electro Commun Japan, 2019, 102(12): 1-13. |
| 19. | Pang BLL. Opinion mining and sentiment analysis. Found Trend Inform Retriev, 2008, 2(1-2): 1-135. |
| 20. | Hassan A, Mahmood A. Efficient deep learning model for text classification based on recurrent and convolutional layers. 2017. |
| 21. | Balaneshinkordan S, Kotov A. Bayesian approach to incorporating different types of biomedical knowledge bases into information retrieval systems for clinical decision support in precision medicine. J Biomed Inform, 2019, 98: 103238. |
| 22. | 吳友政. 構建漢語問答系統評測平臺. 2004. |
| 23. | Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inform Proces Manag, 2015, 51(5): 570-594. |
| 24. | Moirangthem DS, Lee M. Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network. Neural Netw, 2020, 124: 1-11. |
| 25. | Shi K, Lu H, Zhu Y, et al. Automatic generation of meteorological briefing by event knowledge guided summarization model. Knowl Bas Sys, 2020, (1): 192. |
| 26. | Szekely PK. Building and using a knowledge graph to combat human trafficking. Semantic Web-ISWC, 2015, (9367): 205-221. |
| 27. | He T, Huang W, Qiao Y, et al. Text-Attentional Convolutional Neural Network for Scene Text Detection. IEEE Trans Image Process, 2016, 25(6): 2529-2541. |
| 28. | 歐陽恩, 李作高, 李昱熙, 等. 基于深度學習的電子病歷命名實體識別及其在知識發現中的應用. 中國衛生信息管理雜志, 2018, 15(4): 469-473. |
| 29. | 易應萍, 張志強, 王強. 基于自然語言處理技術的醫學命名實體解析研究. 中國數字醫學, 2018, 13(12): 20-22. |
| 30. | 張順利, 王應軍, 姬東鴻. 基于BLSTM網絡的醫學時間短語識別. 計算機應用研究, 2019, (1): 1-5. |
| 31. | 趙君珂, 張振宇, 蔡開裕. 基于自然語言處理的醫學實體識別與標簽提取. 計算機技術與發展, 2019, 29(9): 18-23. |
| 32. | Raynaud M, Goutaudier V, Louis K, et al. Impact of the COVID-19 pandemic on publication dynamics and non-COVID-19 research production. BMC Med Res Methodol, 2021, 21(1): 255. |
| 33. | Lagunes-García G, Rodríguez-González A, Prieto-Santamaría L, et al. DISNET: a framework for extracting phenotypic disease information from public sources. PeerJ, 2020, 8: e8580. |
| 34. | Mutinda FW, Liew K, Yada S, et al. Automatic data extraction to support meta-analysis statistical analysis: a case study on breast cancer. BMC Med Inform Decis Mak, 2022, 22(1): 158. |
| 35. | Zengul FD, Lee T, Delen D, et al. Research themes and trends in ten top-ranked nephrology journals: a text mining analysis. Am J Nephrol, 2020, 51(2): 147-159. |
| 36. | Valtchinov VI, Lacson R, Wang A, et al. Comparing artificial intelligence approaches to retrieve clinical reports documenting implantable devices posing MRI safety risks. J Am Coll Radiol, 2020, 17(2): 272-279. |
| 37. | Verma AA, Masoom H, Pou-Prom C, et al. Developing and validating natural language processing algorithms for radiology reports compared to ICD-10 codes for identifying venous thromboembolism in hospitalized medical patients. Thromb Res, 2022, 209: 51-58. |
| 38. | Shelmerdine SC, Singh M, Norman W, et al. Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clin Radiol, 2019, 74(9): 733. |
| 39. | Morandini P, Laino ME, Paoletti G, et al. Artificial intelligence processing electronic health records to identify commonalities and comorbidities cluster at Immuno Center Humanitas. Clin Transl Allergy, 2022, 12(6): e12144. |
| 40. | Aakre CA. Applying natural language processing neural network architectures to augment appointment request review of self-referred patients to an academic medical center. AMIA Annu Symp Proc, 2022, 2022: 85-91. |
| 41. | Lee KC, Udelsman BV, Streid J, et al. Natural language processing accurately measures adherence to best practice guidelines for palliative care in Trauma. J Pain Symptom Manage, 2020, 59(2): 225-232. |
| 42. | Hussain SA, Sezgin E, Krivchenia K, et al. A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study. JAMIA Open, 2021, 4(3): b84. |
| 43. | Weitzman ER, Magane KM, Chen PH, et al. Online searching and social media to detect alcohol use risk at population scale. Am J Prev Med, 2020, 58(1): 79-88. |
| 44. | 聶莉莉, 李傳富, 許曉倩, 等. 人工智能在醫學診斷知識圖譜構建中的應用研究. 醫學信息學雜志, 2018, 39(6): 7-12. |
| 45. | 趙雪嬌. 婦產科知識圖譜構建研究與實現. 中國數字醫學, 2019, 14(1): 3-5. |
| 46. | 張小亮, 王忠民, 王永慶, 等. 基于自然語言處理的臨床合理用藥知識圖譜構建. 中華醫學圖書情報雜志, 2019, 28(9): 1-5. |
| 47. | 王琦, 康亮環, 劉國臻. 基于臨床知識圖譜的慢性腎病輔助決策模型研究. 郵電設計技術, 2018, (12): 68-71. |
| 48. | 黃夢禧, 張青川, 陳龍, 等. 面向醫學領域的智能問答APP設計與實現. 軟件導刊, 2019, 18(3): 94-99. |
| 49. | Demner-Fushman D, Mrabet Y, Ben Abacha A. Consumer health information and question answering: helping consumers find answers to their health-related information needs. J Am Med Inform Assoc, 2020, 27(2): 194-201. |
| 50. | Legrand J, Gogdemir R, Bousquet C, et al. PGxCorpus, a manually annotated corpus for pharmacogenomics. Sci Data, 2020, 7(1): 3. |
| 51. | Kang MJ, Dykes PC, Korach TZ, et al. Identifying nurses' concern concepts about patient deterioration using a standard nursing terminology. Int J Med Inform, 2020, 133: 104016. |
| 52. | 朱明宇. 基于醫學人工智能技術的病案首頁智能編碼研究. 中國數字醫學, 2018, 13(4): 34-36. |
| 53. | Fujimori R, Liu K, Soeno S, et al. Acceptance, barriers, and facilitators to implementing artificial intelligence-based decision support systems in emergency departments: quantitative and qualitative evaluation. JMIR Form Res, 2022, 6(6): e36501. |
| 54. | 劉廣建, 李曉君, 李慶豐, 等. 臨床表型數據和醫學知識驅動的兒童膿毒癥亞型識別. 中國數字醫學, 2019, 14(3): 66-69. |
| 55. | Le NQK, Yapp EKY, Nagasundaram N, et al. Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext n-grams. Front Bioeng Biotechnol, 2019, 7: 305. |
| 56. | Bakal G, Talari P, Kakani EV, et al. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J Biomed Inform, 2018, 82: 189-199. |
| 57. | 尹愛寧, 張汝恩. 建立《中醫藥一體化語言系統》. 中國中醫藥信息雜志, 2003, (3): 90-91. |
| 58. | 于彤, 崔蒙, 李海燕, 等. ISO技術規范“中醫藥學語言系統語義網絡框架”的應用研究. 中國醫藥導報, 2016, 13(4): 89-92. |
| 59. | 賈李蓉, 劉麗紅, 劉靜, 等. 基于中醫藥學語言系統的知識問答系統的設計與構建. 中華醫學圖書情報雜志, 2019, 28(5): 11-14. |
| 60. | Yao L, Jin Z, Mao C, et al. Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J Am Med Inform Assoc, 2019, 26(12): 1632-1636. |
| 61. | Li X, Ren J, Zhang W, et al. LTM-TCM: a comprehensive database for the linking of Traditional Chinese medicine with modern medicine at molecular and phenotypic levels. Pharmacol Res, 2022, 178: 106185. |
| 62. | 王瓊. 中醫癥狀術語自動獲取研究. 南京: 江蘇科技大學, 2018. |
| 63. | Sun Y, Zhao Z, Wang Z, et al. Leveraging a joint learning model to extract mixture symptom mentions from traditional Chinese medicine clinical notes. Biomed Res Int, 2022, 2022: 2146236. |
| 64. | Zhou L, Liu S, Li C, et al. Natural language processing algorithms for normalizing expressions of synonymous symptoms in traditional Chinese medicine. Evid Based Complement Alternat Med, 2021, 2021: 6676607. |
| 65. | 李煥. 基于深度學習與主動學習的中醫術語識別研究. 北京: 北京工業大學, 2019. |
| 66. | 趙凱, 王華星, 施娜, 等. 基于Neo4j桂枝湯類方知識圖譜的研究與實現. 世界中醫藥, 2019, 14(10): 2636-2639. |
| 67. | Cheng N, Chen Y, Gao W, et al. An improved deep learning model: s-textblcnn for traditional Chinese medicine formula classification. Front Genet, 2021, 12: 807825. |
| 68. | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv, 2017. |
| 69. | Peterson KS, Chapman AB, Widanagamaachchi W, et al. Automating detection of diagnostic error of infectious diseases using machine learning. PLOS Digit Health, 2024, 3(6): e0000528. |
| 70. | Dagli MM, Oettl FC, Gujral J, et al. Clinical accuracy, relevance, clarity, and emotional sensitivity of large language models to surgical patient questions: cross-sectional study. JMIR Form Res, 2024, 8: e56165. |
| 71. | Zhang Y, Liu C, Liu M, et al. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform, 2023, 25(1): bbad467. |
| 72. | Singh M, Kumar A, Khanna NN, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine, 2024, 73: 102660. |
| 73. | Ball R, Talal AH, Dang O, et al. Trust but verify: lessons learned for the application of ai to case-based clinical decision-making from postmarketing drug safety assessment at the us food and drug administration. J Med Internet Res, 2024, 26: e50274. |
| 74. | Mall R, Singh A, Patel CN, et al. VISH-Pred: an ensemble of fine-tuned ESM models for protein toxicity prediction. Brief Bioinform, 2024, 25(4): bbae270. |
| 75. | 楊濤, 王欣宇, 朱垚, 等. 大語言模型驅動的中醫智能診療研究思路與方法. 南京中醫藥大學學報, 2023, 39(10): 967-971. |
| 76. | Altamimi I, Alhumimidi A, Alshehri S, et al. The scientific knowledge of three large language models in cardiology: multiple-choice questions examination-based performance. Ann Med Surg (Lond), 2024, 86(6): 3261-3266. |
| 77. | 許余龍, 劉海濤, 劉正光. 關于語言研究的理論與方法. 外語教學與研究, 2020, 52(1): 3-11. |
| 78. | Zeroual I, Lakhouaja A. Data science in light of natural language processing: an overview. Proc Comput Sci, 2018, 127: 82-91. |
| 79. | Trends in natural language processing: ACL 2019 in review. 2019. |
- 1. Manaris B. Natural language processing: a human-computer interaction perspective. Advance Comput, 1998, 47(8): 1-66.
- 2. 馮志偉. 自然語言處理的歷史與現狀. 中國外語, 2008, (1): 14-22.
- 3. 李宇明. 語言學是一個學科群. 語言戰略研究, 2018, 3(1): 15-24.
- 4. Booth AD, Brandwood L, Cleave JP. Mechanical resolution of linguistic problems. 1958.
- 5. Searle JR. Minds, brains, and programs. Behav Brain Sci, 1980, 3(3): 417-457.
- 6. 王大鵬. 國內語料庫發展現存問題與分析. 渤海大學學報(哲學社會科學版), 2010, 32(3): 137-140.
- 7. 詹衛東, 郭銳, 常寶寶, 等. 北京大學CCL語料庫的研制. 語料庫語言學, 2019, 6(1): 71-86, 116.
- 8. 北京大學開放研究數據平臺. 北京大學計算語言學研究所: 綜合型語言知識庫(CLKB).
- 9. 柏曉靜, 俞士汶, 朱學鋒. 自然語言處理中的技術評測及關于英語專業考試的思考. 外語電化教學, 2010, (1): 3-9, 18.
- 10. 李素建, 王厚峰, 俞士汶, 等. 關鍵詞自動標引的最大熵模型應用研究. 計算機學報, 2004, (9): 1192-1197.
- 11. 宗成慶. 統計自然語言處理. 北京: 清華大學出版社, 2013: 8.
- 12. Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc, 2018, 25(10): 1419-1428.
- 13. 郁林音. 譯者視角的當代機器翻譯發展綜述. 現代交際, 2020, (4): 71-73.
- 14. Zhang J, Zong C. Deep neural networks in machine translation: an overview. IEEE Intel Sys, 2015, 30(5): 16-25.
- 15. Wu Y, Schuster M, Chen Z, et al. Google's neural machine translation system: bridging the gap between human and machine translation. ar Xiv preprint ar Xiv, 2016: 1609-8144.
- 16. 中國新聞網. 網易有道入圍工信部新一代AI產業創新重點任務揭榜名單. 2020.
- 17. 汪少敏, 楊迪, 任華. 基于深度學習的文本分類系統關鍵技術研究與模型驗證. 電信科學, 2018, 34(12): 117-124.
- 18. Miyazaki K, Ida M. Construction of consistency judgment system of diploma policy and curriculum policy using character‐level CNN. Electro Commun Japan, 2019, 102(12): 1-13.
- 19. Pang BLL. Opinion mining and sentiment analysis. Found Trend Inform Retriev, 2008, 2(1-2): 1-135.
- 20. Hassan A, Mahmood A. Efficient deep learning model for text classification based on recurrent and convolutional layers. 2017.
- 21. Balaneshinkordan S, Kotov A. Bayesian approach to incorporating different types of biomedical knowledge bases into information retrieval systems for clinical decision support in precision medicine. J Biomed Inform, 2019, 98: 103238.
- 22. 吳友政. 構建漢語問答系統評測平臺. 2004.
- 23. Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inform Proces Manag, 2015, 51(5): 570-594.
- 24. Moirangthem DS, Lee M. Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network. Neural Netw, 2020, 124: 1-11.
- 25. Shi K, Lu H, Zhu Y, et al. Automatic generation of meteorological briefing by event knowledge guided summarization model. Knowl Bas Sys, 2020, (1): 192.
- 26. Szekely PK. Building and using a knowledge graph to combat human trafficking. Semantic Web-ISWC, 2015, (9367): 205-221.
- 27. He T, Huang W, Qiao Y, et al. Text-Attentional Convolutional Neural Network for Scene Text Detection. IEEE Trans Image Process, 2016, 25(6): 2529-2541.
- 28. 歐陽恩, 李作高, 李昱熙, 等. 基于深度學習的電子病歷命名實體識別及其在知識發現中的應用. 中國衛生信息管理雜志, 2018, 15(4): 469-473.
- 29. 易應萍, 張志強, 王強. 基于自然語言處理技術的醫學命名實體解析研究. 中國數字醫學, 2018, 13(12): 20-22.
- 30. 張順利, 王應軍, 姬東鴻. 基于BLSTM網絡的醫學時間短語識別. 計算機應用研究, 2019, (1): 1-5.
- 31. 趙君珂, 張振宇, 蔡開裕. 基于自然語言處理的醫學實體識別與標簽提取. 計算機技術與發展, 2019, 29(9): 18-23.
- 32. Raynaud M, Goutaudier V, Louis K, et al. Impact of the COVID-19 pandemic on publication dynamics and non-COVID-19 research production. BMC Med Res Methodol, 2021, 21(1): 255.
- 33. Lagunes-García G, Rodríguez-González A, Prieto-Santamaría L, et al. DISNET: a framework for extracting phenotypic disease information from public sources. PeerJ, 2020, 8: e8580.
- 34. Mutinda FW, Liew K, Yada S, et al. Automatic data extraction to support meta-analysis statistical analysis: a case study on breast cancer. BMC Med Inform Decis Mak, 2022, 22(1): 158.
- 35. Zengul FD, Lee T, Delen D, et al. Research themes and trends in ten top-ranked nephrology journals: a text mining analysis. Am J Nephrol, 2020, 51(2): 147-159.
- 36. Valtchinov VI, Lacson R, Wang A, et al. Comparing artificial intelligence approaches to retrieve clinical reports documenting implantable devices posing MRI safety risks. J Am Coll Radiol, 2020, 17(2): 272-279.
- 37. Verma AA, Masoom H, Pou-Prom C, et al. Developing and validating natural language processing algorithms for radiology reports compared to ICD-10 codes for identifying venous thromboembolism in hospitalized medical patients. Thromb Res, 2022, 209: 51-58.
- 38. Shelmerdine SC, Singh M, Norman W, et al. Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clin Radiol, 2019, 74(9): 733.
- 39. Morandini P, Laino ME, Paoletti G, et al. Artificial intelligence processing electronic health records to identify commonalities and comorbidities cluster at Immuno Center Humanitas. Clin Transl Allergy, 2022, 12(6): e12144.
- 40. Aakre CA. Applying natural language processing neural network architectures to augment appointment request review of self-referred patients to an academic medical center. AMIA Annu Symp Proc, 2022, 2022: 85-91.
- 41. Lee KC, Udelsman BV, Streid J, et al. Natural language processing accurately measures adherence to best practice guidelines for palliative care in Trauma. J Pain Symptom Manage, 2020, 59(2): 225-232.
- 42. Hussain SA, Sezgin E, Krivchenia K, et al. A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study. JAMIA Open, 2021, 4(3): b84.
- 43. Weitzman ER, Magane KM, Chen PH, et al. Online searching and social media to detect alcohol use risk at population scale. Am J Prev Med, 2020, 58(1): 79-88.
- 44. 聶莉莉, 李傳富, 許曉倩, 等. 人工智能在醫學診斷知識圖譜構建中的應用研究. 醫學信息學雜志, 2018, 39(6): 7-12.
- 45. 趙雪嬌. 婦產科知識圖譜構建研究與實現. 中國數字醫學, 2019, 14(1): 3-5.
- 46. 張小亮, 王忠民, 王永慶, 等. 基于自然語言處理的臨床合理用藥知識圖譜構建. 中華醫學圖書情報雜志, 2019, 28(9): 1-5.
- 47. 王琦, 康亮環, 劉國臻. 基于臨床知識圖譜的慢性腎病輔助決策模型研究. 郵電設計技術, 2018, (12): 68-71.
- 48. 黃夢禧, 張青川, 陳龍, 等. 面向醫學領域的智能問答APP設計與實現. 軟件導刊, 2019, 18(3): 94-99.
- 49. Demner-Fushman D, Mrabet Y, Ben Abacha A. Consumer health information and question answering: helping consumers find answers to their health-related information needs. J Am Med Inform Assoc, 2020, 27(2): 194-201.
- 50. Legrand J, Gogdemir R, Bousquet C, et al. PGxCorpus, a manually annotated corpus for pharmacogenomics. Sci Data, 2020, 7(1): 3.
- 51. Kang MJ, Dykes PC, Korach TZ, et al. Identifying nurses' concern concepts about patient deterioration using a standard nursing terminology. Int J Med Inform, 2020, 133: 104016.
- 52. 朱明宇. 基于醫學人工智能技術的病案首頁智能編碼研究. 中國數字醫學, 2018, 13(4): 34-36.
- 53. Fujimori R, Liu K, Soeno S, et al. Acceptance, barriers, and facilitators to implementing artificial intelligence-based decision support systems in emergency departments: quantitative and qualitative evaluation. JMIR Form Res, 2022, 6(6): e36501.
- 54. 劉廣建, 李曉君, 李慶豐, 等. 臨床表型數據和醫學知識驅動的兒童膿毒癥亞型識別. 中國數字醫學, 2019, 14(3): 66-69.
- 55. Le NQK, Yapp EKY, Nagasundaram N, et al. Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext n-grams. Front Bioeng Biotechnol, 2019, 7: 305.
- 56. Bakal G, Talari P, Kakani EV, et al. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J Biomed Inform, 2018, 82: 189-199.
- 57. 尹愛寧, 張汝恩. 建立《中醫藥一體化語言系統》. 中國中醫藥信息雜志, 2003, (3): 90-91.
- 58. 于彤, 崔蒙, 李海燕, 等. ISO技術規范“中醫藥學語言系統語義網絡框架”的應用研究. 中國醫藥導報, 2016, 13(4): 89-92.
- 59. 賈李蓉, 劉麗紅, 劉靜, 等. 基于中醫藥學語言系統的知識問答系統的設計與構建. 中華醫學圖書情報雜志, 2019, 28(5): 11-14.
- 60. Yao L, Jin Z, Mao C, et al. Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J Am Med Inform Assoc, 2019, 26(12): 1632-1636.
- 61. Li X, Ren J, Zhang W, et al. LTM-TCM: a comprehensive database for the linking of Traditional Chinese medicine with modern medicine at molecular and phenotypic levels. Pharmacol Res, 2022, 178: 106185.
- 62. 王瓊. 中醫癥狀術語自動獲取研究. 南京: 江蘇科技大學, 2018.
- 63. Sun Y, Zhao Z, Wang Z, et al. Leveraging a joint learning model to extract mixture symptom mentions from traditional Chinese medicine clinical notes. Biomed Res Int, 2022, 2022: 2146236.
- 64. Zhou L, Liu S, Li C, et al. Natural language processing algorithms for normalizing expressions of synonymous symptoms in traditional Chinese medicine. Evid Based Complement Alternat Med, 2021, 2021: 6676607.
- 65. 李煥. 基于深度學習與主動學習的中醫術語識別研究. 北京: 北京工業大學, 2019.
- 66. 趙凱, 王華星, 施娜, 等. 基于Neo4j桂枝湯類方知識圖譜的研究與實現. 世界中醫藥, 2019, 14(10): 2636-2639.
- 67. Cheng N, Chen Y, Gao W, et al. An improved deep learning model: s-textblcnn for traditional Chinese medicine formula classification. Front Genet, 2021, 12: 807825.
- 68. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv, 2017.
- 69. Peterson KS, Chapman AB, Widanagamaachchi W, et al. Automating detection of diagnostic error of infectious diseases using machine learning. PLOS Digit Health, 2024, 3(6): e0000528.
- 70. Dagli MM, Oettl FC, Gujral J, et al. Clinical accuracy, relevance, clarity, and emotional sensitivity of large language models to surgical patient questions: cross-sectional study. JMIR Form Res, 2024, 8: e56165.
- 71. Zhang Y, Liu C, Liu M, et al. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform, 2023, 25(1): bbad467.
- 72. Singh M, Kumar A, Khanna NN, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine, 2024, 73: 102660.
- 73. Ball R, Talal AH, Dang O, et al. Trust but verify: lessons learned for the application of ai to case-based clinical decision-making from postmarketing drug safety assessment at the us food and drug administration. J Med Internet Res, 2024, 26: e50274.
- 74. Mall R, Singh A, Patel CN, et al. VISH-Pred: an ensemble of fine-tuned ESM models for protein toxicity prediction. Brief Bioinform, 2024, 25(4): bbae270.
- 75. 楊濤, 王欣宇, 朱垚, 等. 大語言模型驅動的中醫智能診療研究思路與方法. 南京中醫藥大學學報, 2023, 39(10): 967-971.
- 76. Altamimi I, Alhumimidi A, Alshehri S, et al. The scientific knowledge of three large language models in cardiology: multiple-choice questions examination-based performance. Ann Med Surg (Lond), 2024, 86(6): 3261-3266.
- 77. 許余龍, 劉海濤, 劉正光. 關于語言研究的理論與方法. 外語教學與研究, 2020, 52(1): 3-11.
- 78. Zeroual I, Lakhouaja A. Data science in light of natural language processing: an overview. Proc Comput Sci, 2018, 127: 82-91.
- 79. Trends in natural language processing: ACL 2019 in review. 2019.

