| 1. |
Petersen JM, Ranker LR, Barnard-Mayers R, et al. A systematic review of quantitative bias analysis applied to epidemiological research. Int J Epidemiol, 2021, 50(5): 1708-1730.
|
| 2. |
Bosco JL, Silliman RA, Thwin SS, et al. A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. J Clin Epidemiol, 2010, 63(1): 64-74.
|
| 3. |
Lash TL, Fink AK, Fox MP. Data sources for bias analysis. 2009.
|
| 4. |
Lash TL, Fox MP, MacLehose RF, et al. Good practices for quantitative bias analysis. Int J Epidemiol, 2014, 43(6): 1969-1985.
|
| 5. |
Turkiewicz A, Nilsson PM, Kiadaliri A. Probabilistic quantification of bias to combine the strengths of population-based register data and clinical cohorts-studying mortality in osteoarthritis. Am J Epidemiol, 2020, 189(12): 1590-1599.
|
| 6. |
Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005, 330(7503): 1304-1305.
|
| 7. |
Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila), 2010, 3(11): 1451-1461.
|
| 8. |
Noto H, Goto A, Tsujimoto T, et al. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One, 2012, 7(3): e33411.
|
| 9. |
Suissa S, Azoulay L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care, 2012, 35(12): 2665-2673.
|
| 10. |
Brown JP, Hunnicutt JN, Ali MS, et al. Core concepts in pharmacoepidemiology: quantitative bias analysis. Pharmacoepidemiol Drug Saf, 2024, 33(10): e70026.
|
| 11. |
國家藥監局藥審中心. 關于發布《藥物真實世界研究設計與方案框架指導原則(試行)》的通告(2023年第5號). 2023.
|
| 12. |
Ding P, VanderWeele TJ. Sensitivity analysis without assumptions. Epidemiology, 2016, 27(3): 368-377.
|
| 13. |
Victora CG, Smith PG, Vaughan JP, et al. Evidence for protection by breast-feeding against infant deaths from infectious diseases in Brazil. Lancet, 1987, 2(8554): 319-322.
|
| 14. |
VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med, 2017, 167(4): 268-274.
|
| 15. |
Yang Q, Yang Z, Cai X, et al. Advances in methodologies of negative controls: a scoping review. J Clin Epidemiol, 2024, 166: 111228.
|
| 16. |
Sofer T, Richardson DB, Colicino E, et al. On negative outcome control of unobserved confounding as a generalization of difference-in-differences. Stat Sci, 2016, 31(3): 348-361.
|
| 17. |
Tchetgen Tchetgen EJ, Park C, Richardson DB. Universal difference-in-differences for causal inference in epidemiology. Epidemiology, 2024, 35(1): 16-22.
|
| 18. |
Rasmussen SA, Jamieson DJ, Honein MA, et al. Zika virus and birth defects-reviewing the evidence for causality. N Engl J Med, 2016, 374(20): 1981-1987.
|
| 19. |
Diaz-Quijano FA, Pelissari DM, Chiavegatto Filho ADP. Zika-associated microcephaly epidemic and birth rate reduction in Brazilian cities. Am J Public Health, 2018, 108(4): 514-516.
|
| 20. |
Miao W, Shi X, Li Y, et al. A confounding bridge approach for double negative control inference on causal effects. 2024.
|
| 21. |
Park C, Richardson DB, Tchetgen Tchetgen EJ. Single proxy control. Biometrics, 2024, 80(2): ujae027.
|
| 22. |
Lash TL, Fox MP, Fink AK. Applying quantitative bias analysis to epidemiologic data. New York: Springer, 2009.
|
| 23. |
McCandless LC, Gustafson P. A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding. Stat Med, 2017, 36(18): 2887-2901.
|
| 24. |
Tyndall MW, Ronald AR, Agoki E, et al. Increased risk of infection with human immunodeficiency virus type 1 among uncircumcised men presenting with genital ulcer disease in Kenya. Clin Infect Dis, 1996, 23(3): 449-453.
|
| 25. |
柏柳安寧, 夏結來, 王陵, 等. 真實世界研究中的常見偏倚及其控制. 中國臨床藥理學與治療學, 2020, 25(12): 1422-1428.
|
| 26. |
Bowker SL, Majumdar SR, Veugelers P, et al. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care, 2006, 29(2): 254-258.
|
| 27. |
Karim ME, Gustafson P, Petkau J, et al. Comparison of statistical approaches for dealing with immortal time bias in drug effectiveness studies. Am J Epidemiol, 2016, 184(4): 325-335.
|
| 28. |
王振宇, 陳朔華, 趙欣宇, 等. Cox及其拓展模型在基于隊列的依時暴露因素效應估計中的應用. 中華流行病學雜志, 2020, 41(6): 957-961.
|
| 29. |
Gray C, Ralphs E, Fox MP, et al. Use of quantitative bias analysis to evaluate single-arm trials with real-world data external controls. Pharmacoepidemiol Drug Saf, 2024, 33(5): e5796.
|
| 30. |
Desai RJ, Levin R, Lin KJ, et al. Bias implications of outcome misclassification in observational studies evaluating association between treatments and all-cause or cardiovascular mortality using administrative claims. J Am Heart Assoc, 2020, 9(17): e016906.
|
| 31. |
劉子言, 吳小麗, 解美秋, 等. 在因果推斷中應用有向無環圖識別和控制選擇偏倚. 中華疾病控制雜志, 2019, 23(3): 351-355.
|
| 32. |
Stang A, Schmidt-Pokrzywniak A, Lash TL, et al. Mobile phone use and risk of uveal melanoma: results of the risk factors for uveal melanoma case-control study. J Natl Cancer Inst, 2009, 101(2): 120-123.
|
| 33. |
Nohr EA, Liew Z. How to investigate and adjust for selection bias in cohort studies. Acta Obstet Gynecol Scand, 2018, 97(4): 407-416.
|
| 34. |
Lash TL, Silliman RA, Guadagnoli E, et al. The effect of less than definitive care on breast carcinoma recurrence and mortality. Cancer, 2000, 89(8): 1739-1747.
|
| 35. |
Sun B, Perkins NJ, Cole SR, et al. Inverse-probability-weighted estimation for monotone and nonmonotone missing data. Am J Epidemiol, 2018, 187(3): 585-591.
|
| 36. |
Cornfield J, Haenszel W, Hammond EC, et al. Smoking and lung cancer: recent evidence and a discussion of some questions. 1959. Int J Epidemiol, 2009, 38(5): 1175-1191.
|