| 1. |
Zhao D, Wang P, Zhao FJ. Toxic metals and metalloids in food: current status, health risks, and mitigation strategies. Curr Environ Health Rep, 2024, 11(4): 468-483.
|
| 2. |
Elshkaki A, Graedel TE, Ciacci L, et al. Resource demand scenarios for the major metals. Environ Sci Technol, 2018, 52(5): 2491-2497.
|
| 3. |
南亞星. 環境鎳、鈷、銅、鋅暴露與腎功能和慢性腎臟病風險的關聯及交互作用研究. 蘭州大學, 2024.
|
| 4. |
Singh R, Gautam N, Mishra A, et al. Heavy metals and living systems: an overview. Indian J Pharmacol, 2011, 43(3): 246-253.
|
| 5. |
Sall ML, Diaw AKD, Gningue-Sall D, et al. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res Int, 2020, 27(24): 29927-29942.
|
| 6. |
李雅嵐. 重金屬鎘暴露的健康風險及對心血管疾病的影響研究. 湖南: 中南大學, 2023.
|
| 7. |
Assadi F, Moghtaderi M. Preventive kidney stones: continue medical education. Int J Prev Med, 2017, 8: 67.
|
| 8. |
黃炯麗. 砷、鉛和鎘暴露與慢性腎臟疾病、腎結石的關聯研究. 南寧: 廣西醫科大學, 2022.
|
| 9. |
Chen YH, Wei CF, Cheng YY, et al. Urine cadmium and urolithiasis: a systematic review and meta-analysis. Environ Res, 2024, 252(Pt 1): 118745.
|
| 10. |
Qing Y, Yang J, Zhu Y, et al. Dose-response evaluation of urinary cadmium and kidney injury biomarkers in Chinese residents and dietary limit standards. Environ Health, 2021, 20(1): 75.
|
| 11. |
Du G, Song X, Zhou F, et al. Association between multiple metal(loid)s exposure and renal function: a cross-sectional study from southeastern China. Environ Sci Pollut Res Int, 2023, 30(41): 94552-94564.
|
| 12. |
Zhao H, Fang L, Chen Y, et al. Associations of exposure to heavy metal mixtures with kidney stone among U. S. adults: a cross-sectional study. Environ Sci Pollut Res Int, 2023, 30(42): 96591-96603.
|
| 13. |
Wüthrich S, Pruijm M, Ackermann D, et al. Association of kidney stone with chronic cadmium exposure in the general adult population. Swiss Med Wkly, 2016, 146: 12S.
|
| 14. |
Guo ZL, Wang JY, Gong LL, et al. Association between cadmium exposure and urolithiasis risk: a systematic review and meta-analysis. Medicine (Baltimore), 2018, 97(1): e9460.
|
| 15. |
Shastri S, Patel J, Sambandam K, et al. Kidney stone pathophysiology, evaluation and management: core curriculum 2023. Am J Kidney Dis, 2023, 82(5): 617-634.
|
| 16. |
Martín-Martín A, Thelwall M, Orduna-Malea E, et al. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations' COCI: a multidisciplinary comparison of coverage via citations. Scientometrics, 2021, 126(1): 871-906.
|
| 17. |
Xu L, Liu Y, Zhao Q, et al. Urinary element profiles and associations with cardiometabolic diseases: a cross-sectional study across ten areas in China. Environ Res, 2022, 205: 112535.
|
| 18. |
盧虎強, 王芳, 惠旭, 等. 鎘暴露與腦卒中發病風險劑量-反應的Meta分析. 中國循證醫學雜志, 2025, 25(4): 420-426.
|
| 19. |
劉倩倩, 嚴雪, 詹柳艷, 等. 咖啡攝入量與肝癌風險的劑量-反應Meta分析. 中國循證醫學雜志, 2023, 23(7): 814-819.
|
| 20. |
郭冰冰, 衛雅蓉, 裴晶晶, 等. 中國0~6歲兒童營養性貧血影響因素meta分析. 中國公共衛生, 2018, 34(4): 589-592.
|
| 21. |
Higgins J, Thompson S. Quantifying heterogeneity in a meta-analysis. Stat Med, 2002, 21(11): 1539-1558.
|
| 22. |
黃靜宇, 張超, 李勝, 等. 劑量-反應Meta分析之限制性立方樣條函數的應用. 中國循證醫學雜志, 2015, 15(12): 1471-1474.
|
| 23. |
羅美玲, 林希建, 劉如春, 等. 劑量反應關系Meta分析在Stata軟件中的實現. 循證醫學, 2014, 14(3): 182-187.
|
| 24. |
黃育北, 李衛芹, 席波, 等. 劑量反應關系Meta分析的模型選擇及分析流程. 中國循證醫學雜志, 2016, 16(2): 223-228.
|
| 25. |
Bao Q, Zhao K, Guo Y, et al. Environmental toxic metal contaminants and risk of stroke: a systematic review and meta-analysis. Environ Sci Pollut Res, 2022, 29(22): 32545-32565.
|
| 26. |
Liu Y, Zhang C, Qin Z, et al. Analysis of threshold effect of urinary heavy metal elements on the high prevalence of nephrolithiasis in men. Biol Trace Elem Res, 2022, 200(3): 1078-1088.
|
| 27. |
Hara A, Yang WY, Petit T, et al. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. Environ Res, 2016, 145: 1-8.
|
| 28. |
Sun Y, Zhou Q, Zheng J. Nephrotoxic metals of cadmium, lead, mercury and arsenic and the odds of kidney stones in adults: an exposure-response analysis of NHANES 2007-2016. Environ Int, 2019, 132: 105115.
|
| 29. |
Wang X, Zhang J, Ma Z, et al. Association and interactions between mixed exposure to trace elements and the prevalence of kidney stones: a study of NHANES 2017-2018. Front Public Health, 2023, 11: 1251637.
|
| 30. |
Li Y, He K, Cao L, et al. Association between plasma cadmium and renal stone prevalence in adults in rural areas of Guangxi, China: a case-control study. BMC Nephrol, 2022, 23(1): 323.
|
| 31. |
陳成, 張宇馨, 吳申燕, 等. 貴州省苗族人群尿中金屬元素與腎結石的關聯性分析. 現代預防醫學, 2024, 51(2): 366-373.
|
| 32. |
Ye Z, Chen Z, Luo J, et al. National analysis of urinary cadmium concentration and kidney stone: evidence from NHANES (2011-2020). Front public health, 2023, 11: 1146263.
|
| 33. |
Huang JL, Mo ZY, Li ZY, et al. Association of lead and cadmium exposure with kidney stone incidence: a study on the non-occupational population in Nandan of China. J Trace Elem Med Biol, 2021, 68: 126852.
|
| 34. |
Witaya S, Pranee M, Pisit L, et al. An association between urinary cadmium and urinary stone disease in persons living in cadmium-contaminated villages in northwestern Thailand: a population study. Environ Res, 2011, 111(4): 579-583.
|
| 35. |
Kaewnate Y, Niyomtam S, Tangvarasittichai O, et al. Association of elevated urinary cadmium with urinary stone, hypercalciuria and renal tubular dysfunction in the population of cadmium-contaminated area. Bull Environ Contam Toxicol, 2012, 89(6): 1120-1124.
|
| 36. |
Witaya S, Pisit L, Muneko N, et al. Cadmium-exposed population in Mae Sot district, Tak province: 3. Associations between urinary cadmium and renal dysfunction, hypertension, diabetes, and urinary stones. J Med Assoc Thai, 2010, 93(2): 231-238.
|
| 37. |
Ferraro P, Bonello M, Frigo A, et al. Cadmium exposure and kidney stone formation in the general population-an analysis of the national health and nutrition examination survey III data. J Endourol, 2011, 25(5): 875-880.
|
| 38. |
J?rup L, Elinder CG. Incidence of renal stones among cadmium exposed battery workers. Br J Ind Med, 1993, 50(7): 598-602.
|
| 39. |
Lu J, Hong D, Wu Q, et al. Association between urinary cobalt exposure and kidney stones in U. S. adult population: results from the National Health and Nutrition Examination Survey. Ren Fail, 2024, 46(1): 2325645.
|
| 40. |
Liang D, Liu C, Yang M. The association between urinary lead concentration and the likelihood of kidney stones in US adults: a population-based study. Sci Rep, 2025, 15(1): 1653.
|
| 41. |
朱凌, 徐銀, 韓永升. 重金屬腎損傷機制的研究進展(綜述). 安徽醫專學報, 2024, 23(1): 93-95.
|
| 42. |
Muntner P, He J, Vupputuri S, et al. Blood lead and chronic kidney disease in the general United States population: results from NHANES III. Kidney Int, 2003, 63(3): 1044-1050.
|
| 43. |
Lin JL, Lin-Tan DT, Li YJ, et al. Low-level environmental exposure to lead and progressive chronic kidney diseases. Am J Med, 2006, 119(8): 707.e1-9(8): 707. e1-9.
|
| 44. |
周旭航, 張剛. 膳食中汞的攝入及其健康風險評估. 中國環境科學學會2021年科學技術年會論文集. 2021: 1934-1942.
|
| 45. |
郭慧芬. 環境汞、鉛、鎘污染對居民健康的影響. 太原: 山西醫科大學, 2007.
|
| 46. |
Liu Y, Zhang C, Qin Z, et al. Analysis of threshold effect of urinary heavy metal elements on the high prevalence of nephrolithiasis in men. Biol Trace Elem Res, 2022, 200(3): 1078-1088.
|
| 47. |
Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health, 2012, 45(6): 344-352.
|
| 48. |
Satarug S, Garrett SH, Sens MA, et al. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect, 2010, 118(2): 182-190.
|
| 49. |
Friberg L. Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning; a clinical and experimental study. Acta Med Scand Suppl, 1950, 240: 1-124.
|
| 50. |
Kazantzis G. Cadmium nephropathy. Contrib Nephrol, 1979, 16: 161-166.
|
| 51. |
Ren ZJ, Zhang Q, Tang NX, et al. Environmental cadmium exposure and the risk of kidney stones: a systematic review and dose-response meta-analysis. Front Med (Lausanne), 2025, 12: 1555028.
|
| 52. |
Jarup L, Persson B, Elinder C. Blood cadmium as an indicator of dose in a long-term follow-up of workers previously exposed to cadmium. Scand J Work Environ Health, 1997, 23(1): 31-36.
|
| 53. |
J?rup L. Cadmium overload and toxicity. Nephrol Dial Transplant, 2002, 17(Suppl 2): 35-39.
|
| 54. |
Thomas LD, Elinder CG, Tiselius HG, et al. Dietary cadmium exposure and kidney stone incidence: a population-based prospective cohort study of men & women. Environ Int, 2013, 59: 148-151.
|
| 55. |
Sorokin I, Mamoulakis C, Miyazawa K, et al. Epidemiology of stone disease across the world. World J Urol, 2017, 35(9): 1301-1320.
|
| 56. |
Dong C, Yang Y, Cheng B, et al. Environmental determinants in the development of kidney stone. Urolithiasis, 2025, 53(1): 43.
|
| 57. |
Wang T, Zhang L, Liu Y, et al. Combined exposure to multiple metals and kidney function in a midlife and elderly population in China: a prospective cohort study. Toxics, 2023, 11(3): 274.
|
| 58. |
Yao X, Steven Xu X, Yang Y, et al. Stratification of population in NHANES 2009-2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes. Environ Int, 2021, 149: 106410.
|
| 59. |
Savolainen H. Cadmium-associated renal disease. Ren Fail, 1995, 17(5): 483-487.
|
| 60. |
Rani A, Kumar A, Lal A, et al. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res, 2014, 24(4): 378-399.
|
| 61. |
Kazantzis G. Cadmium, osteoporosis and calcium metabolism. Biometals, 2004, 17(5): 493-498.
|
| 62. |
Bhattacharyya MH, Whelton BD, Stern PH, et al. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture. Proc Natl Acad Sci U S A, 1988, 85(22): 8761-8765.
|
| 63. |
Renkema KY, Bindels RJ, Hoenderop JG. Role of the calcium-sensing receptor in reducing the risk for calcium stones. Clin J Am Soc Nephrol, 2011, 6(8): 2076-2082.
|