研究表明,維生素 D(Vitamin D,Vit D)在人類大腦和神經系統中扮演著重要角色。已有研究探索了 Vit D 在阿爾茨海默病、帕金森病、多發性硬化癥、精神分裂癥、情感障礙、認知衰退和癲癇等方面的作用,同時 Vit D 在神經系統中也起著神經營養、神經保護、神經傳遞等作用。研究證明,維生素 D 受體(Vitamin D receptor,VDR)普遍存在于神經元和神經膠質細胞乃至整個大腦、脊髓和周圍神經系統中,故 Vit D 在神經系統中的作用從 VDR 也得到了證實。Vit D 在神經系統中的廣泛作用提示了其在大腦中可能存在抗驚厥作用,而既往研究證明癲癇患者的 Vit D 水平普遍較低,且生酮飲食可能會進一步導致 Vit D 水平下降,因此,Vit D 的補充對于癲癇患兒以及生酮飲食治療癲癇的療效具有重要意義。
Citation: 劉麗琴, 廖建湘. 維生素 D 在生酮飲食治療癲癇中的意義. Journal of Epilepsy, 2020, 6(3): 224-227. doi: 10.7507/2096-0247.20200040 Copy
Copyright ? the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
| 1. | Annweiler C, Schott AM, Berrut G, et al. Vitamin D and ageing: neurological issuess. Neuropsychobiology, 2010, 62(3): 139-150. |
| 2. | Eyles DW, Smith S, Kinobe Rl, et al. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemmical Neuroanatomy, 2005, 29(1): 21-30. |
| 3. | Bergqvist AGC, Schall JI, Virginia AS. Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet. Epilepsia, 2007, 48(1): 66-71. |
| 4. | Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys, 2012, 523(1): 123-133. |
| 5. | Marini F, Bartoccini E, Cascianelli G, et al. Effect of 1alpha, 25-dihydroxy vitamin D3 in embryonic hippocampal cells. Hippocampus, 2010, 20(6): 696-705. |
| 6. | Wang Y, Chiang YH, Su TP, et al. Vitamin D(3) attenuates cortical infarction induced by middle cerebral arterial ligation inrats. Neuropharmacology, 2000, 39(5): 873-880. |
| 7. | Naveilhan P, Neveu I, Wion D, et al. 1,25-Dihydroxy vitaminD3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 1996, 7(13): 2171-2175. |
| 8. | Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type Ca2+ channel expression in hippocampal neurons. The Journal of Neuroscience, 2001, 21: 98-108. |
| 9. | Viragh PA. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci USA, 1989, 86: 3887-3890. |
| 10. | Garcion, E, Nataf S, berod A, et al. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat nervous system during experimental allergic encephalomyelitis. Molecular Brain Research, 1997, 45(2): 255-267. |
| 11. | Garcion, E. et al Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25-dihydroxy vitamin D3. Glia, 1998, 22: 282-294. |
| 12. | Dawson VL, Dawson TM. Nitric oxide actions in neurochemistry. Neurochemistry International, 1996, 29: 97-110. |
| 13. | Mitrovic B, Pierre BAS, Allan JMG, et al. The role of nitric oxide in glial pathology. Annals of the New York Academy of Science, 1994, 738(1): 436-446. |
| 14. | Shinpo K, Kikuchi S, Sasaki H, et al. Effect of 1,25-dihydroxy vitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. Journal of Neuroscience Research, 2000, 62(3): 374-382. |
| 15. | Taniera H, Ito M, Sanada N, et al. Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression incultured rat cortical neurons. Journal of Neuroscience Research, 2006, 83(7): 1179-1189. |
| 16. | Dringen R, Gutterer JM, Hirrlinger J, et al. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem, 2000, 267(16): 4912-4916. |
| 17. | Garcion E, Thanh XD, Bled F, et al. 1,25-Dihydroxyvitamin D3 regulates γ-glutamyl transpeptidase activity in rat brain. Neuroscience Letters, 1996, 216(3): 183-186. |
| 18. | Garcion E, Sindji L, Leblondel G, et al. 1,25-Dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem, 1999, 73(2): 859-866. |
| 19. | Sonnenberg J, Luine VN, Krey LC, et al. 1,25dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology, 1986, 118: 1433-1439. |
| 20. | Baksi SN, Hughes MJ. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Research, 1982, 242(2): 387-390. |
| 21. | Puchacz E, Stumpf W E, Stachowiak E K, et al. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Mollecular Brain Research, 1996, 36(1): 193-196. |
| 22. | Almeras L, Eyles D, Benech P, et al. Developmental vitamin Ddeficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics, 2007, 7(5): 769-780. |
| 23. | Christiansen C, Paul R?dbro, Ole Sj?. “Anticonvulsant Action” of Vitamin D in Epileptic Patients? A Controlled Pilot Study. British Medical Journal, 1974, 2(5913): 258-259. |
| 24. | András, Holló, et al. Correction of vitaminD deficiency improves seizure control in epilepsy: A pilot study. Epilepsy Behavior, 2012, 24(1): 131-133. |
| 25. | Kalueff AV, Eremin KO, Tuohimaa P. Mechanisms of neuroprotective action of vitamin D3. Biochemistry, 2004, 69: 738-41. |
| 26. | Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain, Behavior, and Immunity, 2008, 22(6): 0-803. |
| 27. | Beattie, E. C Control of Synaptic Strength by Glial TNFalpha. Science (Washington D C), 2002, 295(5563): 2282-2285. |
| 28. | Stellwagen D, Beattie E C, Seo J Y, et al. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2005, 25(12): 3219-28. |
| 29. | Xu B, Michalski B, Racine R J, et al. Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience, 2002, 115(4): 0-1308. |
| 30. | Leranth C, Ribak CE. Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage. Experimental Brain Research, 1991, 85(1): 129-136. |
| 31. | Kanter-Schlifke I, Georgievska B, Kirik D, et al. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Molecular Therapy the Journal of the American Society of Gene Therapy, 2007, 15(6): 1106-1113. |
| 32. | Norman AW, Okamura WH, Bishop JE, et al. Update on biological actions of 1??, 25(OH)2-vitamin D3 (rapid effects) and 24R, 25(OH)2-vitamin D3. Molecular and Cellular Endocrinology, 2002, 197(1-2): 1-13. |
| 33. | Zanello LP, Norman AW. Rapid modulation of osteoblast ion channel responses by 1? 25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proceedings of the National Academy of Sciences, 2004, 101(6): 1589-1594. |
| 34. | 車千紅, 周佳任, 張瑩. 154 例初診癲癇患兒免疫功能及營養指標的變化. 實用預防醫學, 2015, 22(7). |
| 35. | Tosun A, Karaca SE, Unuvar T, et al. Bone mineral density and vitamin D status in children with epilepsy, cerebral palsy, and cerebral palsy with epilepsy. Childs Nervous System, 2016, 33(1): 1-6. |
| 36. | Sonmez FM, Donmez A, Namuslu M, et al. Vitamin D Deficiency in Children With Newly Diagnosed Idiopathic Epilepsy. Journal of Child Neurology, 2015, 30(11): 1428-1432. |
| 37. | Holló A, Clemens Z, Lakatos P. Epilepsy and vitamin D. Int J Neurosci, 2014, 124(6): 387-93. |
| 38. | Kruse R. Osteopathies in antiepileptic long-term therapy. Monatsschr Kinderheilkd, 1968, 116: 378-81. |
| 39. | Nettekoven S, Strohle A, Trunz B,, et al. Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy. European Journal of Pediatrics, 2008, 167: 1369-1377. |
| 40. | Teagarden DL, Meador KJ, Loring DW. Low vitamin D levels are common in patients with epilepsy. Epilepsy Res, 2014, 108: 1352-6. |
| 41. | Lee YJ, Park KM, Kim YM, et al. Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors. Pediatric Neurology, 2015, 52: 153-159. |
| 42. | Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. Journal of Clinical Investigation, 1972, 51: 741-748. |
| 43. | Pascussi JM, Robert A, Nguyen M, et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. Journal of Clinical Investigation, 2005, 115: 177-186. |
| 44. | Neal E G, Chaffe H, Schwartz R H, et al. The Ketogenic Diet for the treatment of childhood epilepsy: A randomised controlled trial. The Lancet Neurology, 2008, 7(6): 500-506. |
| 45. | Sampath A, Kossoff E H, Furth S L, et al. Kidney Stones and the Ketogenic Diet: Risk Factors and Prevention. Journal of Child Neurology, 2007, 22(4): 375-378. |
| 46. | Bergqvist AC, Schall JI, Stallings VA, et al. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. American Journal of Clinical Nutrition, 2008, 88(6): 1678-1684. |
| 47. | Simm PJ, Bicknellroyle J, Lawrie J, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Research, 2017, 136(6): 62-66. |
| 48. | Hahn TJ, Halstead LR, Devivo DC. Disordered mineral metabolism produced by ketogenic diet therapy. Calcified Tissue International, 1979, 28(1): 17-22. |
- 1. Annweiler C, Schott AM, Berrut G, et al. Vitamin D and ageing: neurological issuess. Neuropsychobiology, 2010, 62(3): 139-150.
- 2. Eyles DW, Smith S, Kinobe Rl, et al. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemmical Neuroanatomy, 2005, 29(1): 21-30.
- 3. Bergqvist AGC, Schall JI, Virginia AS. Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet. Epilepsia, 2007, 48(1): 66-71.
- 4. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys, 2012, 523(1): 123-133.
- 5. Marini F, Bartoccini E, Cascianelli G, et al. Effect of 1alpha, 25-dihydroxy vitamin D3 in embryonic hippocampal cells. Hippocampus, 2010, 20(6): 696-705.
- 6. Wang Y, Chiang YH, Su TP, et al. Vitamin D(3) attenuates cortical infarction induced by middle cerebral arterial ligation inrats. Neuropharmacology, 2000, 39(5): 873-880.
- 7. Naveilhan P, Neveu I, Wion D, et al. 1,25-Dihydroxy vitaminD3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 1996, 7(13): 2171-2175.
- 8. Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type Ca2+ channel expression in hippocampal neurons. The Journal of Neuroscience, 2001, 21: 98-108.
- 9. Viragh PA. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci USA, 1989, 86: 3887-3890.
- 10. Garcion, E, Nataf S, berod A, et al. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat nervous system during experimental allergic encephalomyelitis. Molecular Brain Research, 1997, 45(2): 255-267.
- 11. Garcion, E. et al Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25-dihydroxy vitamin D3. Glia, 1998, 22: 282-294.
- 12. Dawson VL, Dawson TM. Nitric oxide actions in neurochemistry. Neurochemistry International, 1996, 29: 97-110.
- 13. Mitrovic B, Pierre BAS, Allan JMG, et al. The role of nitric oxide in glial pathology. Annals of the New York Academy of Science, 1994, 738(1): 436-446.
- 14. Shinpo K, Kikuchi S, Sasaki H, et al. Effect of 1,25-dihydroxy vitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. Journal of Neuroscience Research, 2000, 62(3): 374-382.
- 15. Taniera H, Ito M, Sanada N, et al. Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression incultured rat cortical neurons. Journal of Neuroscience Research, 2006, 83(7): 1179-1189.
- 16. Dringen R, Gutterer JM, Hirrlinger J, et al. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem, 2000, 267(16): 4912-4916.
- 17. Garcion E, Thanh XD, Bled F, et al. 1,25-Dihydroxyvitamin D3 regulates γ-glutamyl transpeptidase activity in rat brain. Neuroscience Letters, 1996, 216(3): 183-186.
- 18. Garcion E, Sindji L, Leblondel G, et al. 1,25-Dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem, 1999, 73(2): 859-866.
- 19. Sonnenberg J, Luine VN, Krey LC, et al. 1,25dihydroxyvitamin D3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology, 1986, 118: 1433-1439.
- 20. Baksi SN, Hughes MJ. Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Research, 1982, 242(2): 387-390.
- 21. Puchacz E, Stumpf W E, Stachowiak E K, et al. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Mollecular Brain Research, 1996, 36(1): 193-196.
- 22. Almeras L, Eyles D, Benech P, et al. Developmental vitamin Ddeficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics, 2007, 7(5): 769-780.
- 23. Christiansen C, Paul R?dbro, Ole Sj?. “Anticonvulsant Action” of Vitamin D in Epileptic Patients? A Controlled Pilot Study. British Medical Journal, 1974, 2(5913): 258-259.
- 24. András, Holló, et al. Correction of vitaminD deficiency improves seizure control in epilepsy: A pilot study. Epilepsy Behavior, 2012, 24(1): 131-133.
- 25. Kalueff AV, Eremin KO, Tuohimaa P. Mechanisms of neuroprotective action of vitamin D3. Biochemistry, 2004, 69: 738-41.
- 26. Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain, Behavior, and Immunity, 2008, 22(6): 0-803.
- 27. Beattie, E. C Control of Synaptic Strength by Glial TNFalpha. Science (Washington D C), 2002, 295(5563): 2282-2285.
- 28. Stellwagen D, Beattie E C, Seo J Y, et al. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2005, 25(12): 3219-28.
- 29. Xu B, Michalski B, Racine R J, et al. Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience, 2002, 115(4): 0-1308.
- 30. Leranth C, Ribak CE. Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage. Experimental Brain Research, 1991, 85(1): 129-136.
- 31. Kanter-Schlifke I, Georgievska B, Kirik D, et al. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Molecular Therapy the Journal of the American Society of Gene Therapy, 2007, 15(6): 1106-1113.
- 32. Norman AW, Okamura WH, Bishop JE, et al. Update on biological actions of 1??, 25(OH)2-vitamin D3 (rapid effects) and 24R, 25(OH)2-vitamin D3. Molecular and Cellular Endocrinology, 2002, 197(1-2): 1-13.
- 33. Zanello LP, Norman AW. Rapid modulation of osteoblast ion channel responses by 1? 25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proceedings of the National Academy of Sciences, 2004, 101(6): 1589-1594.
- 34. 車千紅, 周佳任, 張瑩. 154 例初診癲癇患兒免疫功能及營養指標的變化. 實用預防醫學, 2015, 22(7).
- 35. Tosun A, Karaca SE, Unuvar T, et al. Bone mineral density and vitamin D status in children with epilepsy, cerebral palsy, and cerebral palsy with epilepsy. Childs Nervous System, 2016, 33(1): 1-6.
- 36. Sonmez FM, Donmez A, Namuslu M, et al. Vitamin D Deficiency in Children With Newly Diagnosed Idiopathic Epilepsy. Journal of Child Neurology, 2015, 30(11): 1428-1432.
- 37. Holló A, Clemens Z, Lakatos P. Epilepsy and vitamin D. Int J Neurosci, 2014, 124(6): 387-93.
- 38. Kruse R. Osteopathies in antiepileptic long-term therapy. Monatsschr Kinderheilkd, 1968, 116: 378-81.
- 39. Nettekoven S, Strohle A, Trunz B,, et al. Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy. European Journal of Pediatrics, 2008, 167: 1369-1377.
- 40. Teagarden DL, Meador KJ, Loring DW. Low vitamin D levels are common in patients with epilepsy. Epilepsy Res, 2014, 108: 1352-6.
- 41. Lee YJ, Park KM, Kim YM, et al. Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors. Pediatric Neurology, 2015, 52: 153-159.
- 42. Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. Journal of Clinical Investigation, 1972, 51: 741-748.
- 43. Pascussi JM, Robert A, Nguyen M, et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. Journal of Clinical Investigation, 2005, 115: 177-186.
- 44. Neal E G, Chaffe H, Schwartz R H, et al. The Ketogenic Diet for the treatment of childhood epilepsy: A randomised controlled trial. The Lancet Neurology, 2008, 7(6): 500-506.
- 45. Sampath A, Kossoff E H, Furth S L, et al. Kidney Stones and the Ketogenic Diet: Risk Factors and Prevention. Journal of Child Neurology, 2007, 22(4): 375-378.
- 46. Bergqvist AC, Schall JI, Stallings VA, et al. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. American Journal of Clinical Nutrition, 2008, 88(6): 1678-1684.
- 47. Simm PJ, Bicknellroyle J, Lawrie J, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Research, 2017, 136(6): 62-66.
- 48. Hahn TJ, Halstead LR, Devivo DC. Disordered mineral metabolism produced by ketogenic diet therapy. Calcified Tissue International, 1979, 28(1): 17-22.
-
Previous Article
兒童急性淋巴細胞白血病合并癲癇發作的研究 -
Next Article
腦面血管瘤病并發癥狀性癲癇的研究進展

