ObjectiveTo review the biological characteristics of self-assembling peptide nanofiber scaffold (SAPNS) and its potential to induce bone repair.
MethodsThe literature regarding SAPNS and its application in bone repair was extensively analyzed and reviewed.
ResultsSAPNS is derived from natural amino acids, and has the properties of good biocompatibility and non-toxic degradation products. Their microenvironment highly mimics the natural extracellular matrix, and controlled release of growth factors as well as modification with functional motifs can substantially improve their bioactivity. Many studies on cell composite culture and bone defect repair of animal models reveal that SAPNS has the ability to promote the function of bone cells (e.g. adherence, proliferation, and differentiation) in vitro, and enhance new bone tissue formation in vivo.
ConclusionSAPNS may be an ideal material for bone repair, but its biologically mechanical properties need further improvement.
ObjectiveTo systematically evaluate the risk prediction models for anastomotic leakage (AL) in patients with esophageal cancer after surgery. MethodsA computer-based search of PubMed, EMbase, Web of Science, Cochrane Library, Chinese Medical Journal Full-text Database, VIP, Wanfang, SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st, 2023. PROBAST tool was employed to evaluate the bias risk and applicability of the model, and Stata 15 software was utilized for meta-analysis. ResultsA total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients. The area under the receiver operating characteristic curve (AUC) was 0.670-0.960. Among them, 23 prediction models had a good prediction performance (AUC>0.7); 13 models were tested for calibration of the model; 1 model was externally validated, and 10 models were internally validated. Meta-analysis showed that hypoproteinemia (OR=9.362), postoperative pulmonary complications (OR=7.427), poor incision healing (OR=5.330), anastomosis type (OR=2.965), preoperative history of thoracoabdominal surgery (OR=3.181), preoperative diabetes mellitus (OR=2.445), preoperative cardiovascular disease (OR=3.260), preoperative neoadjuvant therapy (OR=2.977), preoperative respiratory disease (OR=4.744), surgery method (OR=4.312), American Society of Anesthesiologists score (OR=2.424) were predictors for AL after esophageal cancer surgery. ConclusionAt present, the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage, and the overall research quality needs to be improved.
ObjectiveTo explore the method for establishing a pig left lung orthotopic transplantation model. MethodsDetailed surgical procedures, including animal anesthesia, tracheal intubation, donor lung retrieval, and recipient transplantation, were thoroughly reported. By examining the histological morphology and blood gas analysis of the transplanted lung 2 hours after reperfusion, the histological changes and function of the transplanted lung were assessed. ResultsThis method was applied to four male Yorkshire pigs with an average weight of (40.0 ±2.5) kg for left lung in situ transplantation, effectively simulating conditions relevant to human lung transplantation. Two hours after the transplantation, arterial blood gas analysis showed PaO2 was 155.4-178.6 mm Hg, PaCO2 was 53.1-62.4 mm Hg, and the oxygenation index was 310.8-357.2 mm Hg. Hematoxylin and eosin staining indicated a low degree of pulmonary edema and minimal cellular infiltration. ConclusionThe pig left lung orthotopic transplantation model possesses strong operability and stability. Researchers can replicate this model according to the described methods and further conduct basic research and explore clinical translational applications.