Purpose
To evaluate the prostag landins(PG) levels and to identify the effect of dexamethasone(DXM) on PG in response to photochemical insult in rat retina.
Methods
The experiments were performed on 36 SD rats which were separated into two groups,control and treated groups,and the latter received daily intraperitoneal injections of DXM (1 mg/kg) for 5 consecutive days,starting 3 days before light exposure.The animals were continually exposed to green fluorescent light(510-560 nm)with an illuminance level of (1900plusmn;106.9)lx for 24 hrs.The retinal concentration of PGE 2 and 6-keto-PGF1alpha; were tested at 6hrs,1,3,7 and 14 days after light exposure.
Results
The PGE2 and 6-keto-PGF1alpha; levels of the control groups (37.50plusmn;2.75,48.06plusmn;4.0 4,81.90plusmn;4.89) pg/mg and (4.68plusmn;0.69,7.50plusmn;0.57,10.40plusmn;0.71) pg/mg had significantly higher values than those of the treated rats(20.60plusmn;4.28,37.36plusmn; 3.34,54.85plusmn;4.57) pg/mg and (2.50plusmn;0.59,4.68plusmn;0.81,6.87plusmn;1.10)pg/mg (Plt;0.01) after 6 hrs,1 and 3 days light exposure respectively.
Conclusion
By inhibition of PG synthesis,the DXM may play an ameliorative effect on retinal photochemical injury of rats.
(Chin J Ocul Fundus Dis,1999,15:94-96)
Objective To assess the effects of 670nm LED (lightemitting diode) to protect the photoreceptor from the lightinduced damage in a rat model. Methods 32 SD rats were randomly assigned to one of eight groups: untreated control group, the LEDtreated control group, three groups of lightinduced damage,and three groups of lightinduced damage treated with LED. Lightinduced damage result from exposing to constant light for 3 hours of different illuminations of 900,1800 and 2700 lx, respectively. The LED treatment (50 mW) was delivered for 30 minutes at 3 hours before the light damage and 0,24 and 48 hours after the light damage. Retinal function and morphology were measured by electroretinogram (ERG) and histopathology assay. Results The illumination of 900 lx for 3 hours did not damage the rat retina. The illumination of 1800 lx for 3 hours resulted in thinner ONL and no OS and IS. The ratio of damaged area/total retinal area was 048plusmn;012, the damaged thickness of ONL/normal ONL (L5 ) was 039plusmn;007,and the amplitude of ERG b wave was (431plusmn;120) mu;V. With the LED treatment the ratio of damaged area decreased (M6=017plusmn;0.12, P5/6=0.002), and the ratio of the damaged thickness of ONL also decreased (L6=0.22plusmn;0.09, P5/6lt;0.01), and the amplitude of ERG b wave increased to (1011plusmn;83) mu;V(P5/6lt;0.001). The illumination of 2700 lx for 3 hours caused severed damage to the rat retina and the LED could not protect them significantly. Conclusions 670 nm LED treatment has an evident protective effect on retinal cells against light-induced damage, which may be a simple and effective therapy to prevent or to delay agerelated macular degeneration.
Objective
To observe the pathological and functional changes of retinal photochemical damages exposed to green flurescent light.
Methods
The Sprague Dawley rats were continually exposed to green fluorescent light with an illuminancem level of (1 900plusmn;106.9) Lx for 24 hours.The changes of retinal morphology and morphometrics and flash electroretinogram were studied before light exposure and at the 6th hour,6th day and 14th day after light exposure.
Results
At the 6th hours after light exposure,the outer nuclear layer(ONL)of retina becoma thinner compared with that bfore light exposure.The thickness of ONL decreased by 23.91% and the inner and outer segments appeared disorderly arranged.At the 6th day after light exposure the thickness of ONL is thinner than that at the6th hour,i.e.decreased by 46.6%. At the 14th day after light exposure the thickness of ONL decreased by 42.40%.Flash electroretinogram showed that the amplitudes of a and b wave decreased continuously at the 6th hour and 6th day and unrecovered at the 14th day after light exposure.
Conclusion
This model might be an ideal one for research on retinal photochemical damage.
(Chin J Ocul Fundus Dis,1998,14:101-103)
Objective
To study the response of the retinal neuronal adaptive system to changes of background illumination (BG) by measuring the oscillatory potentials (OPs) and the a- and b-waves of the electroretinogram (ERG) in different BG illuminations.
Methods
The a- and b-wave and the digitally filtered OPs were simultaneously recorded from Wistar Fu rats aged from 25 to 29 days during dark adaptation (DA) and during 6~8 minutes of BG illuminations at four levels increased successively by steps of two log units, i.e., ldquo;low scotopicrdquo; level of 1.43times;10-6cd/m2, ldquo;high scotopicrdquo; of 1.43times;10-4cd/m2 , ldquo;low mesopicrdquo; of 1.43times;10-2cd/m2 and ldquo;high mesopicrdquo; of 1.43times;10-2cd/m2. Full field stimulus flashes of 75 msec duration and 1.43times;10-2cd/m2intensity was delivered at an interval of 1 minute.
Results
Five OP wavelets were recorded in DA and during scotopic BG illuminations. The number of wavelets was reduced to three as the eyes were exposed to mesopic BG levels. However, the sum of OPs amplitudes (SOPs) increased as the BG was intensified, except at ldquo;high mesopicrdquo; level, by which a significant decrease of SOPs occurred. The amplitudes of the a-and b-waves remained unchanged at the two scotopic BG and decreased as the BG intensity increased to mesopic levels.
Conclusion
The response of retinal neural adaptive system of the Albino rat to changes of BG light is more sensitive and robust than the slow components of the ERG. The enhancement of the oscillatory responses at ldquo;low mesopicrdquo; illumination level suggests that using proper BG light may be conducive to reducing the variation of OPs.
(Chin J Ocul Fundus Dis, 2001,17:286-288)
Objective
To observe the effect of visible light on apoptosis of cultured human retinal pigment epithelium (RPE) cells.
Methods
Being the light source,500lx,(2 000±500)lx and (3 400±200)lx cold white light were used. The duration of exposure was 0,6,12 and 24 hours respectively. Apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labelling, Annexin V-flunorescein isothiocyanate/Propidium iodium labelling and flow cytometry.
Results
Apoptosis and necrosis were found in cultured human RPE cells which were exposed to visible light.(1)A significant increase in apoptotic and necrotic percentages was consistent with a higher light intensity.(2)Apoptosis was the main response to shorter (6 h and 12 h) exposure duration,while necrosis was more pronounced correlated to the prolongation of post-exposure culture (P<0.05),and the longer the post-exposure period was, the more apoptotic necrosis were seen.Thirty-six hours after exposure the necrotic percentages were more pronounced (P<0.01).
Conclusions
Visible light (>500 lx) increases the proportion of apoptosis and necrosis of human RPE cells in vitro.The extent is related to exposure intensity and duration. It demonstrates that the lower intensity and the shorter duration of exposure to light are, the more pronounced apoptotic percentages are observed,otherwise necrosis.
(Chin J Ocul Fundus Dis, 2002, 18: 227-230)
Photosensitive occipital lobe epilepsy (POLE) is a rare idiopathic reflex focal epilepsy that can occur in all age groups. It is characterized by occipital lobe seizures induced by flashing stimuli (flashing sunlight, video games, TV commercials and programs, etc.). Photoparoxysmal response on EEG is induced by intermittent photic stimulation; Ictal EEG shows rapid spike rhythms are originated from the occipital region. There are no obvious abnormalities in brain image. POLE responds well to anti-seizure medications and has a good prognosis. This article reviews the research progress on POLE in order to improve the clinician’s understanding and reduce the rates of missed diagnosis and misdiagnosis.
PURPOSE:The changes of expression level of rhodopsin mRNA and its relationship with the morphology in light damaged rat retinas were studied. METHODS:The changes of expresson level of rhodopsin mRNA in light damaged rat retinas and the changes on retinal morphology were observed through the technique of in situ hybridization and electron microscopy.
RESULTS:The hybridization signals of rhodopsin mRNA mainly distributed in the photoreceptor layer of retina,relatively b in the inner and outer segments. As the increase of light exposure time,the expression level of rhodopsin
mRNA in retinas greatly decreased before the changes on morphological injury of retina. For the same eye globe of the same rat at the same time,the hybridization signals at the upper and posterior region of the retina decreased more obviously than the lower and peripheral region of the retina. CONCLUSIONS:It was demonstrated for the first time that the expression of
rhodopsin mRNA was located at the photoreceptor layer of the retina. Continuous exposure to light could greatly decrease the expression of rhodopsin mRNA and the decreases differ regionally. It might be the early signals of retinal photic injury.It is a good method to study the expression level of retina mRNA through the in situ hybridization.
(Chin J Ocul Fundus Dis,1997,13: 228-210)
In order to solve the problems that the injury, hemorrhage, infection and edema of the brain tissue caused by brain electrodes implantation for aquatic animal robots, a light stimulation device and an optical control experiment method for carp robots are proposed in this paper. According to the shape of the carp skull, the device is a structure of Chinese character " 王” cut by a printed circuit board which can provide three groups of A, B and C bridge platforms for the light stimulation source. The two ends of a bridge in every group are welded with a jumper board, and the light emitting diodes (LED) are inserted into the jumper boards as the light stimulation source, and all negative poles of the jumper boards are connected to the console by the wire. A LED light can be replaced by another LED light according to the need of the wavelength of the LED light, and various combinations of the light stimulation modes can be also selected. This device was mounted on the carp robot’s head, the carp robot was placed in a water maze, and the optical control experiment method was observed to control the forward movement and steering movement of the carp robots (n = 10) under the dark light condition. The results showed that the success rates of the three groups of red light control experiments were 53%–87%, and the success rates of the three groups of blue light control experiments were 50%–80%. This study shows that the apparatus and the method are feasible.
ObjectiveTo observe the influence of down-regulation of HtrA1 expression by small interfering RNA on light-injured human retinal pigment epithelium (RPE) cells.
MethodsCultured human RPE cells(8th-12th generations)were exposed to the blue light at the intensity of (2000±500) Lux for 6 hours to establish the light injured model. Light injured cells were divided into HtrA1 siRNA group, negative control group and blank control group. HtrA1 siRNA group and negative control group were transfected with HtrA1 siRNA and control siRNA respectively. The proliferation of cells was assayed by CCK-8 method. Transwell test was used to detect the invasion ability of these three groups. Flow cytometry was used to detect the cell cycle and apoptosis. The expression of HtrA1 and vascular endothelial growth factor (VEGF)-A was detected by real time-polymerase chain reaction and Western blot respectively.
ResultsThe mRNA and protein level of HtrA1 in the light injured cells increased significantly compared to that in normal RPE cells (t=17.62, 15.09; P<0.05). Compared with negative control group and blank control group, the knockdown of HtrA1 in HtrA1 siRNA group was associated with reduced cellular proliferation (t=6.37, 4.52), migration (t=9.56, 12.13), apoptosis (t=23.37, 29.08) and decreased mRNA (t=17.36, 11.32, 7.29, 4.05) and protein levels (t=12.02, 15.28, 4.98, 6.24) of HtrA1 and VEGF-A. Cells of HtrA1 siRNA group mainly remained in G0/G1 phase, the difference was statistically significant (t=6.24, 4.93; P<0.05).
ConclusionKnockdown of HtrA1 gene may reduce the proliferation, migration capability and apoptosis of light-injured RPE cells, and decrease the expression of VEGF-A.