1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "再入院" 13 results
        • Risk factors for unplanned readmission in ischemic stroke patients within 31 days: a random forest algorithm research

          ObjectivesTo investigate risk factors for unplanned readmission in ischemic stroke patients within 31 days by using random forest algorithm.MethodsThe record of readmission patients with ischemic stroke within 31 days from 24 hospitals in Beijing between between 2015 and 2016 were collected. Patients were divided into two groups according to the occurrence of readmission within 31 days or not. Chi-squared or Mann-Whitney U test was used to select variables into the random forest algorithm. The precision coefficient and the Gini coefficient were used to comprehensively assess the importance of all variables, and select the more important variables and use the margind effect to assess relative risk of different levels.ResultsA total of 3 473 patients were included, among them 960 (27.64%) were readmitted within 31 days after stroke hospitalization. Based on the result of random forest, the most important variables affecting the risk of unplanned readmission within 31 days included the length of hospital stay, age, medical expense payment, rank of hospital, and occupation. When hospitalization was within 1 month, 10-day-hospitalization-stay patients had the lowest risk of rehospitalization; the younger the patients was, the higher the risk of readmission was. For ranks of hospital, patients from tertiary hospital had higher risk than secondary hospital. Furthermore, patients whose medical expenses were paid by free medical service and whose occupations were managers or staffs had higher risk of readmission within 31 days.ConclusionsThe unplanned readmission risk within 31 days of discharged ischemic stroke patients was connected not only with disease, but also with personal social and economic factors. Thus, more attention should be paid to both the medical process and the personal and family factors of stroke patients.

          Release date:2019-06-24 09:18 Export PDF Favorites Scan
        • Construction and validation of a risk prediction model of unplanned 30-day readmission in patients after isolated coronary artery bypass grafting

          ObjectiveTo investigate the factors associated with unplanned readmission within 30 days after discharge in adult patients who underwent coronary artery bypass grafting (CABG) and to develop and validate a risk prediction model. MethodsA retrospective analysis was conducted on the clinical data of patients who underwent isolated CABG at the Nanjing First Hospital between January 2020 and June 2024. Data from January 2020 to August 2023 were used as a training set, and data from September 2023 to June 2024 were used as a validation set. In the training set, patients were divided into a readmission group and a non-readmission group based on whether they had unplanned readmission within 30 days post-discharge. Clinical data between the two groups were compared, and logistic regression was performed to identify independent risk factors for unplanned readmission. A risk prediction model and a nomogram were constructed, and internal validation was performed to assess the model’s performance. The validation set was used for validation. ResultsA total of 2 460 patients were included, comprising 1 787 males and 673 females, with a median age of 70 (34, 89) years. The training set included 1 932 patients, and the validation set included 528 patients. In the training set, there were statistically significant differences between the readmission group (79 patients) and the non-readmission group (1 853 patients) in terms of gender, age, carotid artery stenosis, history of myocardial infarction, preoperative anemia, and heart failure classification (P<0.05). The main causes of readmission were poor wound healing, postoperative pulmonary infections, and new-onset atrial fibrillation. Multivariable logistic regression analysis revealed that females [OR=1.659, 95%CI (1.022, 2.692), P=0.041], age [OR=1.042, 95%CI (1.011, 1.075), P=0.008], carotid artery stenosis [OR=1.680, 95%CI (1.130, 2.496), P=0.010], duration of first ICU stay [OR=1.359, 95%CI (1.195, 1.545), P<0.001], and the second ICU admission [OR=4.142, 95%CI (1.507, 11.383), P=0.006] were independent risk factors for unplanned readmission. In the internal validation, the area under the curve (AUC) was 0.806, and the net benefit rate of the clinical decision curve analysis (DCA) was >3%. In the validation set, the AUC was 0.732, and the DCA net benefit rate ranged from 3% to 48%. ConclusionFemales, age, carotid artery stenosis, duration of first ICU stay, and second ICU admission are independent risk factors for unplanned readmission within 30 days after isolated CABG. The constructed nomogram demonstrates good predictive power.

          Release date:2025-04-28 02:31 Export PDF Favorites Scan
        • Risk prediction models for readmission within 30 days after discharge in patients with chronic obstructive pulmonary disease: a systematic review

          ObjectiveTo systematically review the risk prediction models for readmission within 30 days after discharge in patients with chronic obstructive pulmonary disease (COPD), and provide a reference for clinical selection of risk assessment tools. MethodsDatabases including CNKI, Wanfang Data, VIP, CBM, PubMed, Embase, Web of Science, and Cochrane Library were searched for literature on this topic. The search time was from the inception of the database to April 25, 2023. Literature screening and data extraction were performed by two researchers independently. The risk of bias and applicability of the included literature were evaluated using the risk of bias assessment tool for predictive model studies. ResultsA total of 8 studies were included, including 14 risk prediction models for 30-day readmission of COPD patients after discharge. The total sample size was 125~8 263, the number of outcome events was 24~741, and the area under the receiver operating characteristic curve was 0.58~0.918. The top five most common predictors included in the model were smoking, comorbidities, age, education level, and home oxygen therapy. Although five studies had good applicability, all eight studies had a certain risk of bias. This is mainly due to the small sample size of the model, lack of reporting of blinding, lack of external validation, and inappropriate handling of missing data. ConclusionThe overall prediction performance of the risk prediction model for 30-day readmission of patients with COPD after discharge is good, but the overall research quality is low. In the future, the model should be continuously improved to provide a scientific assessment tool for the early clinical identification of patients with COPD at high risk of readmission within 30 days after discharge.

          Release date:2024-01-10 01:54 Export PDF Favorites Scan
        • Research progress on unplanned readmissions in patients with left ventricular assist devices

          The implantation of left ventricular assist device (LVAD) has significantly improved the quality of life for patients with end-stage heart failure. However, it is associated with the risk of complications, with unplanned readmissions gaining increasing attention. This article reviews the influencing factors, prediction methods and models, and intervention measures for unplanned readmissions in LVAD patients, aiming to provide scientific guidance for clinical practice, assist healthcare professionals in accurately assessing patients' conditions, and develop rational care plans.

          Release date:2025-05-30 08:48 Export PDF Favorites Scan
        • Construction and validation of a predictive model of acute exacerbation readmission risk within 30 days in elderly patients with chronic obstructive pulmonary disease

          ObjectiveTo analyze the influencing factors of acute exacerbation readmission in elderly patients with chronic obstructive pulmonary disease (COPD) within 30 days, construct and validate the risk prediction model.MethodsA total of 1120 elderly patients with COPD in the respiratory department of 13 general hospitals in Ningxia from April 2019 to August 2020 were selected by convenience sampling method and followed up until 30 days after discharge. According to the time of filling in the questionnaire, 784 patients who entered the study first served as the modeling group, and 336 patients who entered the study later served as the validation group to verify the prediction effect of the model.ResultsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors were the influencing factors of patients’ readmission to hospital. The risk prediction model was constructed: Z=–8.225–0.310×assignment of education level+0.564×assignment of smoking status+0.873×assignment of number of acute exacerbations of COPD hospitalizations in the past 1 year+0.779×assignment of regular use of medication+0.617×assignment of rehabilitation and exercise +0.970×assignment of nutritional status+assignment of seasonal factors [1.170×spring (0, 1)+0.793×autumn (0, 1)+1.488×winter (0, 1)]. The area under ROC curve was 0.746, the sensitivity was 75.90%, and the specificity was 64.30%. Hosmer-Lemeshow test showed that P=0.278. Results of model validation showed that the sensitivity, the specificity and the accuracy were 69.44%, 85.71% and 81.56%, respectively.ConclusionsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors are the influencing factors of patients’ readmission to hospital. The risk prediction model is constructed based on these factor. This model has good prediction effect, can provide reference for the medical staff to take preventive treatment and nursing measures for high-risk patients.

          Release date:2021-08-30 02:14 Export PDF Favorites Scan
        • Impact of nutritional risk on unplanned readmissions in elderly patients with chronic obstructive pulmonary disease

          Objective To investigate the impact of nutritional risk on unplanned readmissions in elderly patients with chronic obstructive pulmonary disease (COPD), to provide evidence for clinical nutrition support intervention. Methods Elderly patients with COPD meeting the inclusive criteria and admitted between June 2014 and May 2015 were recruited and investigated with nutritional risk screening 2002 (NRS 2002) and unplanned readmission scale. Meanwhile, the patients’ body height and body weight were measured for calculating body mass index (BMI). Results The average score of nutritional risk screening of the elderly COPD patients was 4.65±1.33. There were 456 (40.07%) patients who had no nutritional risk and 682 (59.93%) patients who had nutritional risk. There were 47 (4.13%) patients with unplanned readmissions within 15 days, 155 (13.62%) patients within 30 days, 265 (23.28%) patients within 60 days, 336 (29.53%) patients within 180 days, and 705 (61.95%) patients within one year. The patients with nutritional risk had significantly higher possibilities of unplanned readmissions within 60 days, 180 days and one year than the patients with no nutritional risk (all P<0.05). The nutritional risk, age and severity of disease influenced unplanned readmissions of the elderly patients with COPD (all P<0.05). Conclusions There is a close correlation between nutritional risk and unplanned readmissions in elderly patients with COPD. Doctors and nurses should take some measures to reduce the nutritional risk so as to decrease the unplanned readmissions to some degree.

          Release date:2017-07-24 01:54 Export PDF Favorites Scan
        • Analysis of factors influencing re-hospitalization and death in coronary heart disease patients with heart failure based on the joint fragility model: a prospective cohort study

          ObjectiveThe re-hospitalization and death events of patients heart failure caused by coronary heart disease are characterized by non-independence, heterogeneity, and censored data. A joint frailty model is established to jointly model the events, explore the risk factors affecting the prognosis of patients, and reduce the re-hospitalization rate and mortality of patients. MethodsThe sample included 4 682 patients with heart failure caused by coronary heart disease in two tertiary hospitals from January 2014 and June 2019. The electronic medical record information of patients during hospitalization and their follow-up information were collected. The Cox model, conditional frailty model and joint frailty model were used to analyze patient re-hospitalization and death. ResultsThe joint frailty model identified patients with a higher risk of both relapse and death (θ=0.209, P<0.001). Risk factors for re-hospitalization were advanced age, grade 3 hypertension, mental work, no medical insurance, high cystatin C, low ejection fraction, and low free thyroxine-3 and thyroxine-4. Antiplatelet drugs and statins significantly reduced the risk of re-hospitalization. Risk factors for death were advanced age, New York Heart Association classification Ⅲ to Ⅳ, no medical insurance, mental work, high cystatin C level, high troponin-I level, low free thyroxine-3, and low ejection fraction. Percutaneous coronary intervention, and taking antiplatelet drugs and statins significantly reduced the risk of death. ConclusionThe joint frailty model can simultaneously model recurring and terminal events, and accurately predict them. Our results suggest that thyroid hormone levels and cystatin C levels of patients should be considered more carefully. People with mental jobs should change bad working habits to reduce adverse outcomes.

          Release date:2025-06-16 05:31 Export PDF Favorites Scan
        • Re-admission risk prediction models for patients with heart failure after discharge: A systematic review

          ObjectiveTo systematically evaluate the predictive models for re-admission in patients with heart failure (HF) in China. MethodsStudies related to the risk prediction model for HF patient re-admission published in The Cochrane Library, PubMed, EMbase, CNKI, and other databases were searched from their inception to April 30, 2024. The prediction model risk of bias assessment tool was used to assess the risk of bias and applicability of the included literature, relevant data were extracted to evaluate the model quality. ResultsNineteen studies were included, involving a total of 38 predictive models for HF patient re-admission. Comorbidities such as diabetes, N-terminal pro B-type natriuretic peptide/brain natriuretic peptide, chronic renal insufficiency, left ventricular ejection fraction, New York Heart Association cardiac function classification, and medication adherence were identified as primary predictors. The area under the receiver operating characteristic curve ranged from 0.547 to 0.962. Thirteen studies conducted internal validation, one study conducted external validation, and five studies performed both internal and external validation. Seventeen studies evaluated model calibration, while five studies assessed clinical feasibility. The presentation of the models was primarily in the form of nomograms. All studies had a high overall risk of bias. ConclusionMost predictive models for HF patient re-admission in China demonstrate good discrimination and calibration. However, the overall research quality is suboptimal. There is a need to externally validate and calibrate existing models and develop more stable and clinically applicable predictive models to assess the risk of HF patient re-admission and identify relevant patients for early intervention.

          Release date: Export PDF Favorites Scan
        • 腦卒中患者再入院及相關危險因素的研究現狀

          腦卒中具有高發病率、高死亡率、高致殘率的特點,是危害中老年人健康的常見病、多發病,給社會、家庭、患者及家屬帶來極大的心理及經濟負擔。腦卒中后1年復發率為4%~14%,致殘率、病死率均高于首次發病。國內外學者就導致腦卒中患者再入院的相關危險因素及預防措施進行了一些試驗與研究。現將對國內外關于腦卒中患者再入院高危因素的研究現狀進行綜述,探討影響腦卒中患者再入院的危險因素,為有針對性地進行護理干預、隨訪,降低其再入院率提供理論依據及指導。

          Release date: Export PDF Favorites Scan
        • Risk prediction models for 30-day unplanned readmission in patients undergoing coronary artery bypass grafting: A systematic review

          Objective To systematically evaluate risk prediction models for 30-day unplanned readmission in patients undergoing coronary artery bypass grafting (CABG). Methods We searched PubMed, EMbase, Cochrane Library, Web of Science, CINAHL, CNKI, CBM, WanFang, and VIP databases from inception to June 25, 2025. Two investigators independently screened literature, extracted data, and assessed bias risk/applicability using PROBAST criteria. Results Thirteen studies comprising 17 prediction models were included. Ten models reported the area under the receiver operating characteristic curve (AUC) for modeling (0.597-0.906), ten models reported the AUC for internal validation (0.57-0.92), and twelve models reported the AUC for external validation (0.537-0.865). Core predictors included age, female sex, diabetes, and heart failure. All studies had a high risk of bias. Conclusion The research on risk prediction models for 30-day unplanned readmission in patients undergoing CABG is still in its exploratory stages. Some models exhibit insufficient performance, and there is a need to enhance the processes of model validation and performance evaluation. It is expected that future efforts will focus on developing prediction models with excellent performance and high applicability, to assist healthcare providers in the early identification of high-risk patients for readmission.

          Release date: Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品