Objective To identify the effect of β-endorphin in the development of paresthesia in hypertrophic scar by detecting the expression and content of β-endorphin in human normal skin and hypertrophic scar. Methods Hypertrophic scar samples were collected from 42 patients with hypertrophic scar for 1-20 years (mean, 4.5 years), including 15 males and27 females with an average age of 32.6 years (range, 16-50 years). According to the kind of paresthesia, they were divided into 3 gourps: non-pain-pruritus group (n=20), pruritus group (n=14), and pain-pruritus group (n=8). Normal skin samples (normal skin group) were harvested from 5 patients undergoing skin grafting surgery, including 3 males and 2 females with an average age of 24.6 years (range, 15-37 years). The immunofluorescence method was used to observe the expression of β-endorphin and ELISA method to detect the concentrations of β-endorphin in the tissues. Results The β-endorphin expressed in all samples, and it expressed around peri pheral nerve fibers in the dermis, fibroblasts, and monocytoid cells princi pally; and it expressed significantly ber in pruritus group and pain-pruritus group than in non-pain-pruritus group and normal skin group. The β-endorphin content was (617.401 ± 97.518) pg/mL in non-pain-pruritus group, (739.543 ± 94.149) pg/mL in pruritus group, (623.294 ± 149.613) pg/mL in pain-pruritus group, and (319.734 ± 85.301) pg/mL in normal skin group; it was significantly higher in non-pain-pruritus group, pruritus group, and pain-pruritus group than in normal skin group (P lt; 0.05); it was significantly higher in pruritus group than in non-pain-pruritus group and pain-pruritus group (P lt; 0.05); and there was no significant difference between non-pain-pruritus group and pain-pruritus group (P gt; 0.05). Conclusion The expression of β-endorphin is high in hypertrophic scar, it may paly an important role in process of pruritus in these patients.
Objective To investigate an effect of compressive stress on proliferation and apoptosis of human hyperplastic scar fibroblasts(HSFb) in vitro. Methods HSFb were obtained from a 20 year old female patient who developed a hyperplastic scar 3 months after operation for a largearea burn. HSFb were isolated, and were cultured in vitro with the simplified airpressure controlled cellculture instrument, and then they were randomly divided into the following 8 groups: the control group (no stress) and the 7 continuous compressive stress groups, which respectively underwent the 5, 10, 15, 25, 50, 100 and 150mmHg(1mmHg=0.133 kPa) pressure treatment for 4d ays. The absorbance (A) of the cell and the inhibition ratio (IR) of the cell proliferation were determined by the MTT assay, the cell growth cycle was determined by the flow cytometer, and the cell apoptosis was observed by the AnnexinV binding with PI labeling method. Results In the 5, 10, 15, 25, 50, 100 and 150mmHg pressure groups and the control group, the A values of the cells were 0.228±0.004, 0.226±0.003, 0.213±0.005, 0.180±0.005, 0.172±0.007, 0.165±0.004, 0.164±0.004 and 0.230±0.005, respectively; the IRs of the cell proliferation were 0.8%,2.0%,7.3%,21.7%,252%, 28.2% and 0, respectively;the ratios of the cells in G1 were 71.80%±0.44%, 72.32%±0.40%, 74.56%±1.01%, 82.82%±2.76%, 86.77%±2.06%, 88.23%±1.27%, 89.11%±1.74% and 71.6%±0.49%,respectively; the cell apoptosis ratios were 4.22%±0.49%, 5.12%±0.74% , 8.58%±0.79%, 19.28%±1.40%, 25.60%±1.21%, 3580%±2.39%, 36.18%±2.38% and 4.00%±0.36%, respectively. In the 5 and 10mmHggroups there were no statistically significant differences in all the above parameters when compared with those in the control group (P>0.05); however, in the 15, 25,50, 100 and 150mmHg groups there were statistically significant differences in the above parameters when compared with those in the control group (P<0.05). Furthermore, in the 10, 15, 25 and 50 mmHg groups, there were statistically significant differences in the Avalue of the cells and the ratios of the cells in G 1 when compared with each other (P<0.01). By contrast, there were no statistically significant differences in the 50, 100 and 150 mmHg groups when compared witheach other (P>0.05). In the 10, 15, 25, 50 and 100mmHg groups there werestatistically significant differences in the cell apoptosis ratio when comparedwith each other (P<0.01). In the 100 and 150 mmHg groups there were no such statistically significant differences when compared with each other (P>0.05).Conclusion A continuous compressive stress when given properly can have a combined effect of the proliferation inhibition and the apoptosis promotion on HSFb in vitro, and this kind of combined effects can becomeone of the important mechanisms for the pressure therapy in treating hyperplastic scar.
To study the variations of l ipid peroxidation products and copper, zinc-superoxide dismutase(CuZn-SOD) in pathological scars (hypertrophic scars and keloids). Methods The specimens were gained from patients of voluntary contributions from May 2005 to August 2005. The tissues of hypertrophic scar (10 cases, aged 16-35 years, the mean course of disease was 2.2 years), keloid (10 cases, aged 17-32 years, the mean course of disease was 8 months) and normal skin (8 cases, aged 16-34 years) were obtained. The content of malonaldehyde (MDA)and CuZn-SOD activity were detected by spectrophotometric method. The expression of CuZn-SOD was evaluated by immunohistochemistry technique. Results The contents of MDA and CuZn-SOD activity were significantly higher in hypertrophic scars[MDA (1.139 0 ± 0.106 7)nmoL/mg prot, CuZn-SOD (31.65 ± 2.21)U/mg prot, (P lt; 0.05)]and keloids[MDA (1.190 0 ± 0.074 8)nmoL/ mg prot, CuZn-SOD (34.36 ± 5.01)U/mg prot (P lt; 0.05)] than those of normal skin tissues [MDA (0.821 3 ± 0.086 4)nmoL/mg prot, CuZn-SOD (20.60 ± 5.56)U/mg prot]. Immunohistochemical studies indicated that the brown particles were CuZn-SOD positive signals, which mainly located cytoplasm in normal skin tissues, hypertrophic scars as well as keloids epidermal keratinocytes and dermal fibroblasts. CuZn-SOD expression evaluation in hypertrophic scars (4.14 ± 0.90, P lt; 0.05) and keloids epidermal keratinocytes (4.43 ± 0.79, P lt; 0.05) markedly increased when compared with normal skin tissues (2.20 ± 0.45). The expression of CuZn-SODin hypertrophic scars (4.00 ± 0.82, P lt; 0.05) and keloids dermal fibroblasts (4.43 ± 0.53, P lt; 0.05) were significantly higher than that of normal skin tissues (1.60 ± 0.89). There were no differences in the content of MDA, CuZn-SOD activity and expression evaluation between hypertrophic scars and keloids (P gt; 0.05). Conclusion In pathological scars, the contents of MDA and CuZn-SOD activity increase and the expressions of CuZn-SOD are enlarged.
Objective To detect the expression of heat shock protein 47 mRNA in pathological scar tissue by using real-time fluorescent quantitative reversetranscription-polymerase chain reaction (RT-PCR). Methods The tissues of normal skin(n=6), hypertrophic scar(n=6) and keloid(n=6) were adopted, which were diagnosised by Pathology Department. Based on fluorescent TaqMan methodology, the real-time fluorescent quantitative RT-PCR were adopted to detect the expression ofheat shock protein 47 mRNA. Results Compared with normal skin tissue(0.019±0.021)×105, the expressions of heat shock protein47 cDNA of hypertrophic scar tissue(1.233±1.039)×105 and keloid tissue(1.222±0.707)×105 were higher, being significant differences(Plt;0.05). Conclusion A fluorescent quantitative method was successfully applied to detecting the expression of heat shock protein 47 mRNA. Heat shock protein 47 may play an important role in promoting the formation of pathological scar tissue.
Objective To study the effect of myofibroblast on the development of pathological scar. Methods From 1998 to 2000, 14 cases of keloid(k), 13 cases of hypertrophic scar(HS), and 7 cases of scar were studied through immunohistochemistry and electronical microscope. Results Myofibroblasts were often observed in the hypertrophic HS by electronical microscope, but no myofibroblast was observed in the K and NS. αSMactin was expressed in fibroblast of HS, but was not expressed in K and NS. Conclusion Myofibroblast may play a role in the development of hypertrophic scar. The difference between the absence of myofibroblast in keloid and the invasion of keloid deserves further study.
In order to study the biological properties of fibroblasts isolated from different tissues. The fibroblasts from normal skin, hypertrophic scar and keloid were cultured, respectively, in vitro, and their morphologies and growth kinetics were compared. The results revealed that although fibroblasts in keloid were irregularly arranged, crisscross and overlapping with loss of polarization, there was no significant difference in the 3 groups so far the cellular morphology of fibroblast itself, cellular growth curve, cellular mitotic index, cloning efficiency and DNA content provided those cultures were in the same cellular density and culture conditions. It was concluded that fibroblasts isolated from culture of normal skin, hypertrophic scar and keloid in vitro showed no significant difference in morphology and growth kinetics, on the contrary, their biological behaviors were quite similar.
Objective To study the expression of heat shock protein 47 (HSP47) and its correlation to collagen deposition in pathological scar tissues. Methods The tissues of normal skin(10 cases), hypertrophic scar(19 cases), and keloid(16 cases) were obtained. The expression ofHSP47 was detected by immunohistochemistry method. The collagen fiber content was detected by Sirius red staining and polarization microscopy method. Results Compared with normal skin tissues(Mean IOD 13 050.17±4 789.41), the expression of HSP47 in hypertrophic scar(Mean IOD -521 159.50±272994.13) and keloid tissues(Mean IOD 407 440.30±295 780.63) was significantly high(Plt;0.01). And there was a direct correlation between the expression of HSP47 and the total collagen fiber content(r=0.386,Plt;0.05). Conclusion The HSP47 is highly expressed in pathological scartissues and it may play an important role in the collagen deposition of pathological scar tissues.
Objective To study the effect and mechanism of the apoptosis of hypertrophic scar fibroblasts (HSF) induced by artesunate(Art). Methods HSFs were isolated and cultured from human earlobe scars by the tissue adherence method. The 3th to 5th generation cells were harvested and divided into two groups. HSF was cultured with normal medium in control group and with medium containing60, 120 and 240 mg/L (5 ml)Art in experimental group. Apoptosis and cell cycle were identified by light microscopy, electronmicroscopy and flow cytometry. Then, HSF was cultured with normal medium in control group and with medium containing 30, 60 and 120 mg/L Art in experimental group. The changes of intracellular calcium concentration were observed. Results The primary HSF was fusiform in shape and adherent. The vimentin positive expression was analyzed by immunocytochemistry. Art could induce apoptosis of HSF in the range of 60-240 mg/L under inverted microscope. The effect was dose and timedependent. Clumping of nuclear chromatin showed margination in the experimentalgroup. And the disaggregation of the nucleolus were observed under electronmicroscopy. There were significant differences in the proportion of HSF apoptosis and HSF at G0-G1,S, G2-M stages between the two groups(P<0.05). Apoptotic peak was shown in experimental group by flow cytometry. The peak became more evident asArt concentration increased. The intracellular calcium concentration elevated markedly in HSF with 30-120 mg/L Art treatment for 24 hours, showing significant differences between the two groups (P<0.05). Conclusion The Art facilitates HSF cells apoptosis in vitro by the change of cell cycle. It is suggested that intracellular calcium variation may be one of the mechanisms of HSF apoptosis induced by Art.
【摘要】 目的 建立兔耳中期瘢痕動物模型,尋找兔耳瘢痕形成的最佳位點。 方法 選用日本大耳白兔20只,在兔耳腹側選定6個位點,作直徑1 cm直達軟骨表面的皮膚全層及軟組織缺損240個。創面暴露,于傷后7 d去除軟骨上面的肉芽及血漿痂殼一次。術后連續3個月觀察創面自然愈合及瘢痕增生情況;用HE及苦味酸-天狼星紅染色觀察瘢痕形成及膠原分布情況;用計算機圖像分析系統測定膠原含量。 結果 兔耳腹側可制作類似人的增生性瘢痕模型,瘢痕的發生率42.5%~56.7%,瘢痕增生的高峰在造創后30~50 d。不同位點瘢痕增生程度不同,膠原含量也不同。 結論 兔耳腹側可建立中期瘢痕動物模型,兔耳腹側的中分和耳尖外側部分是制作兔耳增生性瘢痕的理想位點。【Abstract】 Objective To establish an animal model of intermediate stage hypertrophic scar on the rabbit ears and to find out the best sites of scar formation. Methods A total of 240 full-thickness skin and tissue defect directing access to the cartilage surface was created on the ventral side in 20 Japan white rabbits and each ear contain 6 defect sites.The wound was treated by exposure method.On the 7th day after operation, the granulation tissue and plasma shell were removed on the cartilage.Wound healing and scar proliferation under natural condition were observed continuously for 3 months.The scar formation and collagen distribution were observed by HE and Sirius red staining, and the collagen content was analyzed by using computer image analysis system. Results The ventral wound of rabbit’s ears produced hypertrophic scar similar to human hypertrophic scar, the incidence of scar was between 42.5% to 56.7%.The peak of scar proliferation was in 30 days to 50 days after operation.The degree of scar proliferation and collagen content varied at different sites. Conclusion The ventral wound of rabbit’s ears can produce intermediate stage hypertrophic scar model, the middle sites and the lateral ear tip are ideal site for madding animal model of hypertrophic scar on the rabbit ears.