Objective To assess the changes of cardiac autonomic nerves’s function in patients underwent bronchofiberscopy by observing the dynamic electrocardiogram ( DCG) and heart rate variability ( HRV) , and investigate the effect of different preoperative medications on heart function.Methods Eighty patients underwent bronchofiberscopy were randomly divided into three groups according to different anaesthesia. Group A ( n =30) were local anaesthetized by nebulized lidocaine, group B ( n = 30) received atropine 1 mg injection intramuscularly and nebulized lidocaine, group C ( n = 20) were anaesthetized bypropofol intravenously. The DCG and HRV of three groups were mornitored at pre-inductive point( T0 ) , post inductive point ( T1 ) , point during the operation ( T2 ) , and point after operation ( T3 ) .Results The incidences of ST-T change, tachycardia, and bearing premature in group A and B were increased. The incidence of tachycardia in group C was also increased, but lower than group A and B while the ST-T change and bearing premature were milder ( P lt;0. 05) . Episodes of bradycardia occurred 3 times in group A andnone in group B and C ( P lt;0. 01) . The low-frequency ( LF) , high-frequency ( HF) , total power ( TP) in group A and B were raised, but the LF was highly raised, and the LF/HF and HRV significantly decreased.The LF/HF and HRV decreased lightly in group C ( P gt; 0. 05) . Conclusions Bronchofiberscopy examination can decrease HRV and induce arrhythmia and ST-T change, but also excite vagus nerve. Atropine can inhibit the excitability of vagus nerve and have no influence on HRV. The propofol may obviously decrease the sympathetic nervous activation, balance sympathetic and vagus nerves, which is beneficial to the stability of hemodynamics.
To achieve non-contact measurement of human heart rate and improve its accuracy, this paper proposes a method for measuring human heart rate based on multi-channel radar data fusion. The radar data were firstly extracted by human body position identification, phase extraction and unwinding, phase difference, band-pass filtering optimized by power spectrum entropy, and fast independent component analysis for each channel data. After overlaying and fusing the four-channel data, the heartbeat signal was separated using frost-optimized variational modal decomposition. Finally, a chirp Z-transform was introduced for heart rate estimation. After validation with 40 sets of data, the average root mean square error of the proposed method was 2.35 beats per minute, with an average error rate of 2.39%, a Pearson correlation coefficient of 0.97, a confidence interval of [–4.78, 4.78] beats per minute, and a consistency error of –0.04. The experimental results show that the proposed measurement method performs well in terms of accuracy, correlation, and consistency, enabling precise measurement of human heart rate.
The peak period of cardiovascular disease (CVD) is around the time of awakening in the morning, which may be related to the surge of sympathetic activity at the end of nocturnal sleep. This paper chose 140 participants as study object, 70 of which had occurred CVD events while the rest hadn’t during a two-year follow-up period. A two-layer model was proposed to investigate whether hypnopompic heart rate variability (HRV) was informative to distinguish these two types of participants. In the proposed model, the extreme gradient boosting algorithm (XGBoost) was used to construct a classifier in the first layer. By evaluating the feature importance of the classifier, those features with larger importance were fed into the second layer to construct the final classifier. Three machine learning algorithms, i.e., XGBoost, random forest and support vector machine were employed and compared in the second layer to find out which one can achieve the highest performance. The results showed that, with the analysis of hypnopompic HRV, the XGBoost+XGBoost model achieved the best performance with an accuracy of 84.3%. Compared with conventional time-domain and frequency-domain features, those features derived from nonlinear dynamic analysis were more important to the model. Especially, modified permutation entropy at scale 1 and sample entropy at scale 3 were relatively important. This study might have significance for the prevention and diagnosis of CVD, as well as for the design of CVD-risk assessment system.
Fetal heart rate (FHR) baseline estimation is of significance for the computerized analysis of fetal heart rate and the assessment of fetal state. In our work, a fetal heart rate baseline correction algorithm was presented to make the existing baseline more accurate and fit to the tracings. Firstly, the deviation of the existing FHR baseline was found and corrected. And then a new baseline was obtained finally after treatment with some smoothing methods. To assess the performance of FHR baseline correction algorithm, a new FHR baseline estimation algorithm that combined baseline estimation algorithm and the baseline correction algorithm was compared with two existing FHR baseline estimation algorithms. The results showed that the new FHR baseline estimation algorithm did well in both accuracy and efficiency. And the results also proved the effectiveness of the FHR baseline correction algorithm.
The ultrasound Doppler fetal heart rate measurement is the gold standard of fetal heart rate counting. However, the existing fetal heart rate extraction algorithms are not designed specifically to suppress the high maternal interference during the second stage of labor, and false detection occurrences are common during labor. With this background, a method combining time-frequency frame template library optimal selecting and non-linear template matching is proposed. The method contributes a template library, and the optimal template can be selected to match the signal frame. After the short-time Fourier transform of the signal, the difference between the signal and the template is optimized by leaky rectified linear unit (LReLU) function frame by frame. The heart rate was calculated from the peak of the matching curve and the heart rate was calculated. By comparing the proposed method with the autocorrelation method, the results show that the detection accuracy of the proposed method is improved by 20% on average, and the non-linear template matching of 23% samples is at least 50% higher than the autocorrelation method. This paper designs the algorithm by analyzing the characteristics of the interference and signal mixing. We hope that this paper will provide a new idea for fetal heart rate extraction which not only focuses on the original signal.
Alzheimer’s disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group (P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved (P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.
Cardiotocography (CTG) is a commonly used technique of electronic fetal monitoring (EFM) for evaluating fetal well-being, which has the disadvantage of lower diagnostic rate caused by subjective factors. To reduce the rate of misdiagnosis and assist obstetricians in making accurate medical decisions, this paper proposed an intelligent assessment approach for analyzing fetal state based on fetal heart rate (FHR) signals. First, the FHR signals from the public database of the Czech Technical University-University Hospital in Brno (CTU-UHB) was preprocessed, and the comprehensive features were extracted. Then the optimal feature subset based on the k-nearest neighbor (KNN) genetic algorithm (GA) was selected. At last the classification using least square support vector machine (LS-SVM) was executed. The experimental results showed that the classification of fetal state achieved better performance using the proposed method in this paper: the accuracy is 91%, sensitivity is 89%, specificity is 94%, quality index is 92%, and area under the receiver operating characteristic curve is 92%, which can assist clinicians in assessing fetal state effectively.
Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X, Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency (APF) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, APF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.
Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multi-electrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human’s finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.