1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "生物材料" 74 results
        • INFLUENCE OF THREE CENTRAL VENOUS CATHETER BIOMEDICAL MATERIALS ON PROLIFERATION, APOPTOSIS, AND CELL CYCLE OF XUANWEI LUNG CANCER-05 CELLS

          ObjectiveTo explore the influence of three central venous catheter biomedical materials (polyurethane, silicone, and polyvinyl chloride) on the proliferation, apoptosis, and cell cycle of Xuanwei Lung Cancer-05 (XWLC-05) cells so as to provide the basis for clinical choice of central venous catheter. MethodsXWLC-05 cells were cultured and subcultured, and the cells at passage 3 were cultured with polyurethane, silicone, and polyvinyl chloride (1.0 cm × 1.0 cm in size), and only cells served as a control. At 24, 48, and 72 hours after cultured, MTT assay was used to detect the cellular proliferation and flow cytometry to detect the cell cycle and apoptosis. At 72 hours after cultured, inverted microscope was used to observe the cell growth. ResultsInverted microscope showed the cells grew well in control group, polyurethane group, and silicone group. In polyvinyl chloride group, the cells decreased, necrosed, and dissolved; residual adherent cells had morphologic deformity and decreased transmittance. At 24 and 48 hours, no significant difference in proliferation, apoptosis, and cell cycle was found among 4 groups (P gt; 0.05). At 72 hours, the proliferations of XWLC-05 cells in three material groups were significantly inhibited when compared with control group (P lt; 0.05), and the cells in polyvinyl chloride group had more significant proliferation inhibition than polyurethane group and silicone group (P lt; 0.05), but there was no signifcant difference in proliferation inhibition between polyurethane group and silicone group (P gt; 0.05). Compared with the control group, three material groups had significant impact on the rate of apoptosis and cell cycle: polyvinyl chloride group was the most remarkable, followed by silicone group, polyurethane group was minimum (P lt; 0.05). ConclusionPolyvinyl chloride can significantly impact the proliferation, apoptosis, and cell cycle of XWLC-05 cells; polyurethane has better biocompatibility than polyvinyl chloride and silicone

          Release date:2016-08-31 05:39 Export PDF Favorites Scan
        • BIOCOMPATIBILITY OF FGL PEPTIDE SELF-ASSEMBLY NANO-FIBERS WITH NEURAL STEM CELLS IN VITRO

          Objective To observe the biocompatibil ity of self-assembled FGL peptide nano-fibers scaffold with neural stem cells (NSCs). Methods FGL peptide-amphiphile (FGL-PA) was synthesized by sol id-phase peptide synthesistechnique and thereafter It was analyzed and determined by high-performance l iquid chromatography (HPLC) and massspectrometry (MS). The diluted hydrochloric acid was added into FGL-PA solution to reduce the pH value and accordinglyinduce self-assembly. The morphological features of the assembled material were studied by transmission electron microscope (TEM). NSCs were cultured and different concentrations of FGL-PA assembled material were added with the terminal concentrations of 0, 50, 100, 200, 400 mg/L, respectively. CCK-8 kit was used to test the effect of FGL assembled material on prol iferation of NSCs. NSCs were added into differentiation mediums (control group: DMEM/F12 medium containing 2% B27 supplement and 10% FBS; experimental group: DMEM/F12 medium containing 2% B27 supplement, 10% FBS and 100 mg/L FGL-PA, respectively). Immunofluorescence was appl ied to test the effect of FGL-PA assembled material on differentiation of NSCs. Results FGL-PA could be self-assembled to form a gel. TEM showed the self-assembled gel was nano-fibers with diameter of 10-20 nm and length of hundreds nanometers. After NSCs were incubated for 48 hours with different concentrations of FGL-PA assembled material, the result of CCK-8 assay showed that FGL-PA with concentrations of 50, 100 or 200 mg/L could promote the prol iferation of NSCs and absorbance of them was increased (P lt; 0.05). Immunofluorescence analysis notified that the differentiation ratio of neurons from NSCs in control group and experimental group were 46.35% ± 1.27% and 72.85% ± 1.35%, respectively, when NSCs were induced to differentiation for 14 days, showing significant difference between 2 groups (P lt; 0.05). Conclusion FGL-PA can self-assemble to nano-fiber gel, which has good biocompatibil ity and neural bioactivity.

          Release date:2016-09-01 09:19 Export PDF Favorites Scan
        • STUDY STATUS OF COLLAGEN-BASED BIOMATERIALS IN DRUG RELEASE AND TISSUE ENGINEERING

          Objective To introduce the development of the collagen materials in drug release and tissue engineering. Methods Literature review and complex analysis were adopted. Results In recent years, some good progress hasbeen made in the studies of collagen, and study on collagen-based materials has become an investigative hotspot especially in tissue engineering. Some new collagen-based drug delivery andengineered materials have come into clinically-demonstrated moment, which willpromote their clinical applications in tissue repairs.ConclusionCollagen has been considered a good potential material in drug release, especially in the tissue-engineering field. To give collagen new characters we should pay more attention to grafting with different function branches through chemistry technique in the future work, except- moderate cross-linking treatment or commingling withother nature or synthesized macromolecules.

          Release date:2016-09-01 09:33 Export PDF Favorites Scan
        • USE OF CHITIN AS THE STUFFING MATERIAL FOR BONE DEFECT.AN EXPERIMENTAL STUDY

          Chitin was used as the stuffing material bonedefect in animal experiment. Radiological and his-tological examination showed that it had good bi-ologgical compatibility good strength, hemostaticeffect promoting tussue healing and no toxicity.Chitin could be degradated by enzyme and mightbe used as the bone supporting material for treament of bone defect.

          Release date:2016-09-01 11:41 Export PDF Favorites Scan
        • THE INDUSTRIALIZATION OF REGENERATIVE MEDICINE——A Potential Market of $ 500 Billion

          Objective To investigate the latest development of tissue engineeredregenerative medicine in industrialization, with the intention to direct work in practical area. Methods A complete insight of regenerative medicine in industrialization was obtained through referring to update publications, visiting related websites, as well as learning from practical experience. Results The aerial view of the future of regenerative medicine was got based on knowledge of four different tissue engineering projects. Conclusion All present efforts should be devoted to regenerative medicine area meeting the industrialized trends.

          Release date:2016-09-01 09:23 Export PDF Favorites Scan
        • ADVANCES IN TRACHEAL PROSTHESIS

          Objective To review the research advances of the tracheal prosthesis. Methods The articles concerned in recent years were extensively reviewed. Results There were still many arguments about the use of tracheal substitutes. Avariety of artificial trachea had been designed and assessed, but so far none of them had been satisfactory for clinical use. The failures were mainly due to their high mortality and incidence of complication such as prosthetic defluvium, granuloma formation, local infection, air leakage, anastomotic stenosis or obstruction. Conclusion The major causes of the poor effectiveness by the use of tracheal prosthesis are closely related to its biological compatibilities. The selected biomaterials and the design of prosthesis hold the key to a breakthrough in research and clinical use of tracheal prosthesis.

          Release date:2016-09-01 09:29 Export PDF Favorites Scan
        • Processing and Modification of Recombinant Spider Silk Proteins

          Due to its special sequence structure, spider silk protein has unique physical and chemical properties, mechanical properties and excellent biological properties. With the expansion of the application value of spider silk in many fields as a functional material, progress has been made in the studies on the expression of recombinant spider silk proteins through many host systems by gene recombinant techniques. Recombinant spider silk proteins can be processed into high performance fibers, and a wide range of non-fibrous morphologies. Moreover, for their excellent biocompatibility and low immune response they are ideal for biomedical applications. Here we review the process and mechanism of preparation in vitro, chemistry and genetic engineering modification on recombinant spider silk protein.

          Release date: Export PDF Favorites Scan
        • APPLICATION RESEARCH ON DEXTRANBASED HYDROGEL AND ITS DRUG CONTROLLED RELEASE SYSTEM

          Objective To introduce the development of dextran-based hydrogel and its drug delivery system in drug sustained and/or controlled release, and to investigate their application in tissue engineering.Methods Related literature was extensively reviewed and comprehensively analyzed. Results In recent years, great progress was made in the studies of dextran-based hydrogels and study on dextran-based intelligent materials became an investigative hotspot especially in tissue engineering. Conclusion Dextran based hydrogel is considered to be a good potential material in field of drug delivery and tissue engineering. Endowed with new characteristics, a series of intelligent biomaterials can be derived from dextran-based hydrogels, which can be widely used in biomedicine. Further study should be done on the industrialization of its interrelated production.

          Release date:2016-09-01 09:28 Export PDF Favorites Scan
        • Research progress on the effect of surface charge of biomaterials on bone formation

          With the continuous progress of materials science and biology, the significance of biomaterials with dual characteristics of materials science and biology is keeping on increasing. Nowadays, more and more biomaterials are being used in tissue engineering, pharmaceutical engineering and regenerative medicine. In repairing bone defects caused by trauma, tumor invasion, congenital malformation and other factors, a variety of biomaterials have emerged with different characteristics, such as surface charge, surface wettability, surface composition, immune regulation and so on, leading to significant differences in repair effects. This paper mainly discusses the influence of surface charge of biomaterials on bone formation and the methods of introducing surface charge, aiming to promote bone formation by changing the charge distribution on the surface of the biomaterials to serve the clinical treatment better.

          Release date:2022-02-21 01:13 Export PDF Favorites Scan
        • Anticoagulant Ability and Heparinization of Decellularized Biomaterial Scaffolds

          In order to enhance the anticoagulant properties of decellularized biological materials as scaffolds for tissue engineering research via heparinized process, the decellularized porcine liver scaffolds were respectively immobilized with heparin through layer-by-layer self-assembly technique (LBL), multi-point attachment (MPA) or end-point attachment (EPA). The effects of heparinization and anticoagulant ability were tested. The results showed that the three different scaffolds had different contents of heparin. All the three kinds of heparinized scaffolds gained better performance of anticoagulant than that of the control scaffold. The thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) of EPA scaffold group were longest in all the groups, and all the three times exceeded the measurement limit of the instrument. In addition, EPA scaffolds group showed the shortest prepared time, the slowest speed for heparin release and the longest recalcification time among all the groups. The decellularized biological materials for tissue engineering acquire the best effect of anticoagulant ability in vitro via EPA heparinized technique.

          Release date: Export PDF Favorites Scan
        8 pages Previous 1 2 3 ... 8 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品