Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram signal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74±0.46%, sensitivity of 68.76±0.43% and specificity of 92.19±0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.
The growing rate of public health problem for increasing number of people afflicted with poor sleep quality suggests the importance of developing portable sleep electroencephalogram (EEG) monitoring systems. The system could record the overnight EEG signal, classify sleep stages automatically, and grade the sleep quality. We in our laboratory collected the signals in an easy way using a single channel with three electrodes which were placed in frontal position in case of the electrode drop-off during sleep. For a test, either silver disc electrodes or disposable medical electrocardiographic electrodes were used. Sleep EEG recorded by the two types of electrodes was compared to each other so as to find out which type was more suitable. Two algorithms were used for sleep EEG processing, i.e. amplitude-integrated EEG (aEEG) algorithm and sample entropy algorithm. Results showed that both algorithms could perform sleep stage classification and quality evaluation automatically. The present designed system could be used to monitor overnight sleep and provide quantitative evaluation.
The method of using deep learning technology to realize automatic sleep staging needs a lot of data support, and its computational complexity is also high. In this paper, an automatic sleep staging method based on power spectral density (PSD) and random forest is proposed. Firstly, the PSDs of six characteristic waves (K complex wave, δ wave, θ wave, α wave, spindle wave, β wave) in electroencephalogram (EEG) signals were extracted as the classification features, and then five sleep states (W, N1, N2, N3, REM) were automatically classified by random forest classifier. The whole night sleep EEG data of healthy subjects in the Sleep-EDF database were used as experimental data. The effects of using different EEG signals (Fpz-Cz single channel, Pz-Oz single channel, Fpz-Cz + Pz-Oz dual channel), different classifiers (random forest, adaptive boost, gradient boost, Gaussian na?ve Bayes, decision tree, K-nearest neighbor), and different training and test set divisions (2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, single subject) on the classification effect were compared. The experimental results showed that the effect was the best when the input was Pz-Oz single-channel EEG signal and the random forest classifier was used, no matter how the training set and test set were transformed, the classification accuracy was above 90.79%. The overall classification accuracy, macro average F1 value, and Kappa coefficient could reach 91.94%, 73.2% and 0.845 respectively at the highest, which proved that this method was effective and not susceptible to data volume, and had good stability. Compared with the existing research, our method is more accurate and simpler, and is suitable for automation.
Sleep electroencephalogram (EEG) is an important index in diagnosing sleep disorders and related diseases. Manual sleep staging is time-consuming and often influenced by subjective factors. Existing automatic sleep staging methods have high complexity and a low accuracy rate. A sleep staging method based on support vector machines (SVM) and feature selection using single channel EEG single is proposed in this paper. Thirty-eight features were extracted from the single channel EEG signal. Then based on the feature selection method F-Score's definition, it was extended to multiclass with an added eliminate factor in order to find proper features, which were used as SVM classifier inputs. The eliminate factor was adopted to reduce the negative interaction of features to the result. Research on the F-Score with an added eliminate factor was further accomplished with the data from a standard open source database and the results were compared with none feature selection and standard F-Score feature selection. The results showed that the present method could effectively improve the sleep staging accuracy and reduce the computation time.
The research of sleep staging is not only a basis of diagnosing sleep related diseases but also the precondition of evaluating sleep quality, and has important clinical significance. In recent years, the research of automatic sleep staging based on computer has become a hot spot and got some achievements. The basic knowledge of sleep staging and electroencephalogram (EEG) is introduced in this paper. Then, feature extraction and pattern recognition, two key technologies for automatic sleep staging, are discussed in detail. Wavelet transform and Hilbert-Huang transform, two methods for feature extraction, are compared. Artificial neural network and support vector machine (SVM), two methods for pattern recognition are discussed. In the end, the research status of this field is summarized, and development trends of next phase are pointed out.
Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.
Sleep staging is the basis for solving sleep problems. There’s an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.
The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.
The quality of sleep has a great relationship with health and working efficiency. The result of sleep stage classification is an important indicator to measure the quality of sleep, and it is also an important way to diagnose and treat sleep disorders. In this paper, the method of detrended cross-correlation analysis (DCCA) was used to analyze sleep stage classification, sleep electroencephalograph signals, which were extracted from the MIT-BIH Polysomnographic Database randomly. The results showed that the average DCCA exponent of the awake period is smaller than that of the first stage of non-rapid eye movement (NREM) sleeps. It is well concluded that the method of studying the sleep electroencephalograph with this method is of great significance to improve the quality of sleep, to diagnose and to treat sleep disorders.