Objective To investigate the effects of adenosine 2A receptor (A2AR) activation on oxidative stress in small-forsize liver transplantation. Methods A rat orthotopic liver transplantation model was performed using 40% graft, 18 recipients were given intravenously saline (control group), CGS21680 (A2AR agonist, CGS21680 group) or ZM241385 (A2AR antagonist, CGS21680+ZM241385 group) randomly. Aspartate aminotransferase (AST), enzymatic antioxidants 〔superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase (GSH-Px)〕, non-enzymatic antioxidants 〔ascorbic acid (AA); glutathione (GSH); α-tocopherol (TOC)〕 and lipid oxidant metabolites malondialdehyde (MDA) were measured and analyzed at 6 h after reperfusion. Results Compared with the control group and CGS21680+ZM241385 group, A2AR activation increased the activities of SOD and GSHPx (Plt;0.05), reduced the productions of AST and MDA (Plt;0.05), increased the levels of AA, GSH and TOC (Plt;0.05) in CGS21680 group. But there was no significant change in CAT activity (Pgt;0.05) among 3 groups. Conclusions A2AR activation improves the antioxidant enzyme activities, promotes the production of antioxidants, and slowes down the increase in MDA level, depresses of the increase in AST activity. A2AR activation suppresses oxidative damage and increases the antioxidant capacity which in turn minimizes their harmful effects of ischemia-reperfusion in small-for-size liver transplantation.
Objective To investigate the effect of mesenteric lymphatic duct liagtion and glutamine enteral nutrition on intestine and distant organs in intestinal ischemia/reperfusion injury. Methods Forty male SD rats undergoing gastrostomy were randomly assigned into 5 groups (n=8): sham operation group, normal enteral nutrition group, normal enteral nutrition+lymphatic duct ligation group, glutamine group and glutamine+lymphatic duct ligation group. Sham operation group only received laparotomy after 7 days of full diet, the other four groups were subjected to 60 min of intestinal ischemia after 7 days of enteral nutrition, and the two lymphatic duct ligation groups were plus mesenteric lymphatic duct ligation. The original nutrition continued 3 days after reperfusion. Intestinal permeability was detected on day 1 before reperfusion, day 1 and 3 after reperfusion. Intestinal morphology was observed, endotoxin, D-lactate and diamine oxidase levels in serum, and apoptotic index in lung tissue were detected on day 3 after reperfusion. Results The intestinal permeability in each group was significantly increased on day 1 after reperfusion (Plt;0.05), and which in normal enteral nutrition+lymphatic duct ligation group and glutamine+lymphatic duct ligation group were significantly decreased on day 3 after reperfusion (Plt;0.05). The mucosal thickness and villus height of ileum and mucosal thickness of jejunium in glutamine+lymphatic duct ligation group were significantly higher than those in other groups (Plt;0.05), and villus height of ileum in glutamine group was higher than that in normal enteral nutrition group (Plt;0.05); those morphology indexes in normal enteral nutrition+lymphatic duct ligation group were higher than those in normal enteral nutrition group, but there was no statistical signification (Pgt;0.05). Apoptosis index of lung tissue in lymphatic duct ligation groups was significant lower than that in no-ligation groups (Plt;0.05). Levels of endotoxin, D-lactate, and diamine oxidase in lymphatic duct ligation groups had downward trends compared with no-ligation groups, but there was no statistical signification (Pgt;0.05). Conclusions Intestinal ischemia/reperfusion injury of rats can cause intestinal permeability increase, bacterial endotoxin translocation and systemic inflammatory response. Mesenteric lymphatic duct ligation and glutamine enteral nutrition intervention can weak lung tissue damage, increase thickness of intestinal mucosa, maintain intestinal barrier function, reduce endotoxin translocation and attenuate systemic inflammatory response. Enteral nutrition with glutamine was better than normal enteral nutrition.
OBJECTIVE: To investigate the injury on isolated testes induced by ischemia/reperfusion(I/R), and the protective effect of Yisheng injection on the injury. METHODS: Twenty-six isolated cadaver testes contributed by 13 persons were preserved with 4 degrees C 250 ml hypertonic citrate alloxuric (HCA) solution and then reperfused with 37 degrees C 500 ml HCA. Solution of experimental group contained 500 micrograms/ml Yisheng injection. In simple cold preservation test, involving in 8 experimental and 8 control testes, a series of time points (6, 12, 18, 24, 36, 48, 60, 72 hours) were set to harvest. 10 testes (1 testis respectively on 6, 12, 18, 24 and 36 hours in experimental and control groups) were reperfused with 37 degrees C HCA for 6 and 12 hours. Histological and histochemical changes were observed. RESULTS: In the experimental testes, 4 degrees C cold preservation in 24 hours could not induce obvious pathologic changes. After 24 hours, changes such as swelling, vacuolar degeneration or detachment of endothelial cells (ECs), separation between basement membrane and seminiferous epithelium, mal-alignment of spermatogenous cell and edema of mesenchyme could be observed. In the testes preserved for 12 hours, the activity of lactic dehydrogenase(LDH) and succinic dehydrogenase (SDH) increased, then fallen after 24 hours. The activity of Nitric oxide synthetase(NOS) decreased after 18 hours. All changes were more obvious after following 37 degrees C reperfusion. In the control testes, swelling and vacuolar degeneration of ECs occurred on 12 hours cold preservation, and injury was worse along with the prolongation of cold preservation time. Pathologic changes of ECs, seminiferous epithelium and mesenchyme were serious after 37 degrees C reperfusion. CONCLUSION: 4 degrees C cold preservation in 24 hours can only cause mild ECs’ injury, and obvious abnormal testes’ histological profile can be observed beyond 24 hours. 37 degrees C reperfusion will make injury worse. Yisheng injection can keep isolated testes histologic structure well in 24 hours cold preservation, and it has protective effect on I/R injury.
The present study was to investigate the effects of infusing remifentanil-poly-caprolactone (REM-PCL) through the abdominal aorta on spinal cord ischemia reperfusion injury (SCIRI). The model of SCIRI was created by clamping the infrarenal aortic in thirty-six New Zealand white rabbits, which were randomly divided into sham group (group S), control group (group C), and REM-PCL group (group R) with 12 rabbits in each one. The spinal cord microcirculatory blood flow (SCMBF) and blood flow rate (BFR) were monitored before ischemia, 15 min, 30 min, 60 min and 120 min after reperfusion, respectively. Neurologic Function was evaluated before ischemia, 6h, 12h and 24h after reperfusion. The concentration of serum neuron-specific enolase (NSE), interleukin-lβ (IL-lβ) and interleukin-8 (IL-8) were monitored before ischemia, 45 min after ischemia, 30 min, 60 min, 6 h, 12 h and 24 h after reperfusion. The abnormal rate of motor neuron of spinal cord tissues and the level of superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), total anti-oxidation capacity (T-AOC) and mitochondrial swelling degree (MSD) in neural mitochondria were determined before ischemia, 45 min after clamping, 60 min and 120 min after reperfusion. As a result, the neural mitochondrial SOD, GSH-PX and T-AOC decreased while ROS, MDA, MSD, IL-lβ, IL-8 and NSE distinctly increased after clamping of the abdominal aorta as compared to the value before ischemia in group C (P < 0.01). Neurologic function scores recovered more rapidly in group R than those in group C during reperfusion (P < 0.01). The neural mitochondrial SOD, GSH-PX and T-AOC were distinctly higher while ROS, MDA, MSD, IL-lβ, IL-8 and NSE were distinctly lower in group R than those in group C (P < 0.01). The abnormal rate of motor neuron was significantly higher in group C during reperfusion than that in group R (P < 0.01). It has been shown that the intra-aortic REM-PCL infusion can alleviate SCIRI by inhibiting inflammatory response and improving mitochondrial anti-oxidation capacity.
Perfusion of free flaps from groin of rabbits, after 12 hours of complete ischemia, with superoxide dismutase (SOD), an oxygen free radical scavenger, would significantly increase the survival rate of these flaps from 18.75% to 75% in the control group. Tissue levels of SOD and malonydialdehyde (MDA, an end product of lipoperoxidation) were measured before ischemia, after ischemia but before reperfusion, and 60 minites after reperfusion. In untreated flap, after 12 hours- ischemia, the SOD content of skin decreased significantly as compared with the SOD content before ischemia, and reperfusion further decreased SOD activity, while the concentration of MDA increased after ischemia and further increased after reperfusion. In the treated flaps, the concentration of SOD was not decrease and MADnot increased after reperfusion. There was a negative correlation between the values of SOD and MDA. These findings suggested that free oxygen radicals playedan important role in the free flap ischemia reperfusion injury. SOD could increase the survival of ischemic free-flaps by reducing lipoperoxidation. The results had significant clinical implications with regard to organ preservation and transplantation.
OBJECTIVE: To observe the changes of heme oxygenase-1 (HO-1) expression in the skeletal muscle after ischemia-reperfusion of hind limb in rats. METHODS: A model of hind limb ischemia was made by clamping femoral artery with a microvascular clip. Soleus muscle was obtained from the animals received sham operation, 4 h ischemia without reperfusion and 2 h, 4 h, 8 h, 16 h, 24 h reperfusion after 4 h ischemia. Soleus histology and malondialdehyde (MDA) content were measured. The levels of HO-1 mRNA and protein were measured in different time by Northern blotting, Western blotting and immunohistochemistry technique. RESULTS: After ischemia-reperfusion of limb, HO-1 mRNA increased at the 2nd hour, reached a peak at the 8th hour, and returned toward baseline at the 24th hour. The change of protein level was essentially in agreement with that of mRNA. Immunohistochemical results showed that HO-1 expressed primarily in skeletal muscle cytoplasma. There were no positive signals of mRNA and protein in sham group and in ischemia group. After limb reperfusion, MDA contents in the soleus muscle increased significantly when compared with that in the sham group (P lt; 0.05). MDA content of the 8th after reperfusion decreased significantly when compared with that of the 4 h after reperfusion (P lt; 0.05). CONCLUSION: Ischemia-reperfusion can induce HO-1 expression in skeletal muscle in rats, which may provide protection for injured tissue.
During kidney transplant, the non-specific inflammatory response induced by ischemia-reperfusion injury (IRI) will lead to decreased survival ability of transplanted kidney. However, the effect of IRI on long-term survival rate of allograft is not sure. Here we illuminated the relationship between early IRI and decreased long-term survival ability of allograft by retrospectively analyzing the clinical evidences and laboratory investigations. Previous studies showed that early IRI resulted in the graft loss through reduction of renal functional mass, vascular injury, chronic hypoxia and subsequent fibrosis. IRI was also one of the main factors to induce dysfunction of transplanted kidney and acute rejection reaction, and to decrease the allograft survival. Therefore, it’s better to substitute traditional methods with novel measures during kidney transplant which may relieve the renal IRI much better.