1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "色素上皮" 202 results
        • 急性后極部多發性鱗狀色素上皮病變的視網膜電圖特點探討

          Release date:2016-09-02 06:11 Export PDF Favorites Scan
        • Bcl-2、bax在培養的人視網膜色素上皮細胞及視網膜前膜中的表達

          Release date:2016-09-02 06:08 Export PDF Favorites Scan
        • Effects of human vitreous fluid on the proliferation of cultured human retinal pigment epithelial cells and vascular endothelial cells

          Purpose To investigate the effects of human vitreous fluid on proliferation of cultured human retinal pigment epithelial (RPE) cells and vascular endothelial cell lines(VEC304). Methods Human RPE cells and VEC304 were cultured and treated in different human vitreous-conditioned medium (VCM) with or without serum, vitreous volume concentrations of VCM were 1∶8, 1∶4 and 1∶2. Cells proliferation was assayed by tetrazolium (MTT) colorimetry at the 2nd, 4th and 6th day respectively. Results In the presence of serum, 1∶4, 1∶2 VCM had a significantly stimulative effect on RPE cells proliferation compared with control group at the 2nd, 4th, and 6th day retrospectively (P<0.01), but exerted a bly inhibitory effect on VEC304 proliferation compared with control group at the 2nd, 4th, and 6th day retrospectively (Plt;0.05). In the absence of serum, only 1∶2 VCM had a stimulative effect on RPE cells growth compared with control group at the 2nd day (P<0.05) and obviously at the 4th and 6th day respectively (P<0.01). Conclusion Human vitreous fluid influences human RPE cells and VEC304 growth in vitro. This result suggests that vitreous may play different role in proliferative vitreoretinopathy and intraocular neovascular disease. (Chin J Ocul Fundus Dis, 2002, 18: 140-142)

          Release date:2016-09-02 06:01 Export PDF Favorites Scan
        • CRYOPRESERVATION OF HUMAN RETINAL PIGMENT EPITHELIAL CELLS AND CULTURE FROM THAWING OF FROZEN CELLS

          PURPOSE:To establish methods for cryopreservation of human retinal pigment epithelial cells (RPEs)and cell culture from thawing of frozen cells. METHODS:Primary cultured RPEs or its first or second passages,added with 10 dimetbylsulfoxide,were kept in --20℃ for 1 to 2 hours,and then further froze to -40~C over night before being placed in liquid nitrogen. The frozen cells were thawed in 60℃ within 2 minutes. Trypan blue staining and immunocytochemical staining with anti-human keratin were performed for cell viability and differentiation. The growth curve was also determined by calculating the total number of cells/well/day. RESULTS:The viable rate from frozen RPEs was 90%. No differences were observed for growth activity between cultures from frozen cells and controls. The cells were positive with anti-human keratin staining. The logarithmic growth phase was during I to 4 days and the doubling time yeas 1.55 days. CONCLUSION: Cryopreservation of RPEs in liquid nitrogen can maintain biological activities of cells with normal growth and features after thaw- ing. This will provide cell lines for in vitro experiments and possibly for cell banks for RPE transplantation for some fundus diseases. (Chin J Ocul Fundus Dis,1997,13:157-159)

          Release date:2016-09-02 06:12 Export PDF Favorites Scan
        • 視網膜色素上皮錯構瘤影像學檢查一例

          Release date: Export PDF Favorites Scan
        • Expression of hot shock protein 47 in pre-retinal membrane of proliferative vitreoretinopathy and the influence of transforming growth factor-β2 on expression of hot shock protein 47 in retinal pigment epithelial cell

          ObjectiveTo observe the expression of hot shock protein 47 (HSP47) in pre-retinal membrane of proliferative vitreoretinopathy (PVR) and the influence of transforming growth factor-β2 (TGF-β2) on the expression of HSP47 in retinal pigment epithelial (RPE) cell. MethodsPre-retinal membranes were collected and observed by hematoxylin-eosin, Masson and immunohistochemical staining. Cultured ARPE-19 cells were treated with TGF-β2 at serial concentration (0, 1, 5, 10 ng/ml) and time (0, 12, 24, 48 hours), respectively. And then the mRNA and protein expressions of HSP47 and Col-Ⅰ were measured by fluorescence quantitative reverse transcription polymerase chain reaction and Western blot at the same time. ResultsA lot of epithelial cells with pigmental particles were observed in pre-retinal membranes of PVR, much accumulated collagen protein was observed in the specimens, and HSP47 positive expression was bserved in cytoplasm and stroma of most of the epithelioid cells. Compared with 0 ng/ml group, the expressions of HSP47 mRNA in ARPE-19 were up-regulated by 1.32, 2.35, 1.85 fold, significant differences were observed in all groups (F=27.21, P<0.05); the expressions of protein were up-regulated by 2.33, 2.89, 2.60 fold, significant differences were observed in all groups (F=39.78, P<0.05). The expressions of Col-Ⅰ mRNA were up-regulated by 1.29, 1.52, 2.11 fold, significant differences were observed in all groups (F=23.45, P<0.05); the expressions of protein were up-regulated by 1.18, 1.49, 2.11 fold and significant differences were observed in all groups (F=29.10, P<0.05). Compared with 0 hour group, the expressions of HSP47 mRNA were up-regulated by 1.56, 1.84, 2.86 fold in ARPE-19 cells stimulated by 5 ng/ml TGF-β2 for 12, 24 and 48 hours, and the differences were all significant (F=31.56, P<0.05); the expressions of protein were up-regulated by 2.08, 2.37, 2.80 fold, and the differences were all significant (F=49.18, P<0.05). The expressions of Col-Ⅰ mRNA were up-regulated by 1.57, 1.86, 2.78 fold and the differences were all significant (F=54.43, P<0.05), the expressions of protein were up-regulated by 1.38, 1.59, 2.16 fold and the differences were all significant (F=42.52, P<0.05). ConclusionTGF-β2 may play a role in the pathologic process of PVR by promoting the expression of HSP47 and then increasing the synthesis and accumulation of Col-Ⅰ.

          Release date: Export PDF Favorites Scan
        • 白細胞介素-1β促人視網膜色素上皮細胞分泌細胞間黏附分子和整合素β1

          Release date:2016-09-02 05:52 Export PDF Favorites Scan
        • Down-regulated expression of CC chemokine receptor 3 ligands in ranibizumab treated light-injured human retinal pigment epithelium cells

          ObjectiveTo observe the changes of eotaxin-1(CCL11), eotaxin-2(CCL24)and eotaxin-3(CCL26)in ranibizumab treated light-injured human retinal pigment epithelium (RPE) cells ARPE-19 and investigate the effects of vascular endothelial growth factor (VEGF) antagonist to the expressions of eotaxins. MethodsCultured human RPE cells(8th-12th generations)were divided into light-injured group, ranibizumab treated group and normal control group. Cells of the three groups were exposed to the blue light at the intensity of(600±100) Lux for 12 h to establish the light injured model, while cell culture dishes of the normal control group were wrapped with double-layer foil. The cells of ranibizumab treated group were treated with VEGF-A antagonist(ranibizumab)at the final concentration of 0.125 mg/ml for 24 hours directly after the illumination. The mRNA and protein of VEGF-A, eotaxin-1, eotaxin-2, eotaxin-3, NF-κB were determined by Real time-PCR, enzyme-linked immunosorbent assay, Western blot, immunohistochemical staining at 0, 3, 6, 12, 24 hours after light damage. ResultsThe mRNA and protein level of VEGF-A, eotaxin-1, eotaxin-2, eotaxin-3, NF-κB in the light-injuried group increased significantly compared to that in normal control group (P < 0.05). After treating with ranibizumab, the expression of eotaxin-1, eotaxin-2, eotaxin-3, NF-κB were significantly suppressed (P < 0.05). ConclusionThe suppression of over-expression of VEGF in human RPE may down-regulate the expression of eotaxins, via the suppression of NF-κB.

          Release date: Export PDF Favorites Scan
        • Protective effect of complement receptor 1 on barrier of cultured human retinal epithelial cells under complement-activated oxidative stress

          ObjectiveTo observe the effect of complement receptor 1 (CR1) on barrier of cultured human retinal epithelial cells (hRPE) under complement-activated oxidative stress. MethodsThe third to fifth passage of hRPE cultured on Transwell insert were used to establish a stable hRPE monolayer barrier. The hRPE monolayer barrier was exposed to 500 μmol/L ten-butyl hydroperoxide and 10% normal human serum to establish the hRPE monolayer barrier model of complement-activated oxidative stress in vitro. hRPE monolayer barriers under complement-activated oxidative stress were divided into two groups including model group and CR1 treatment (1 μg/ml) group. Model group and CR1 treatment group were treated with 1 μl phosphate buffer solution (PBS) or CR1 for 4 hours. Normal hRPE monolayer barrier were used as control in transepithelial resistance (TER) measurement experiment. TER was measured to evaluate the barrier function of hRPE. The hRPE-secreted vascular endothelial growth factor (VEGF) and chemokine (C-C Motif) Ligand 2 (CCL2), together with complement bioactive fragments (C3a, C5a) and membrane-attack complex (MAC) in the supernatant were detected by enzyme-linked immune sorbent assay. ResultsStable hRPE monolayer barrier was established 3 weeks after hRPE seeded on Transwell insert. Complement-activated oxidative stress resulted in a sharp decrease of TER to 54.51% compared with normal hRPE barrier. CR1 treatment could significantly improve TER of barrier under complement-activated oxidative stress to 63.48% compared with normal hRPE barrier(t=21.60, P < 0.05). Compared with model group, CR1 treatment could significantly decrease the concentration of VEGF and CCL2 by 11.48% and 23.47% secreted by hRPE under complement-activated oxidative stress (t=3.26, 2.43; P < 0.05). Compared with model group, CR1 treatment could also decreased the concentration of C3a, C5a and MAC by 24.00%, 27.87%, 22.44%.The difference were statistically significant (t=9.86, 2.63, 6.94; P < 0.05). ConclusionsCR1 could protect the barrier function of hRPE cells against complement-activated oxidative stress. The underlying mechanism may involve inhibiting complement activation and down-regulating the expression of VEGF and CCL2.

          Release date: Export PDF Favorites Scan
        • 息肉樣脈絡膜血管病變伴視網膜色素上皮撕裂的臨床特征

          Release date: Export PDF Favorites Scan
        21 pages Previous 1 2 3 ... 21 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品