ObjectiveTo explore the effect of Poria cocos on xenograft tumors of gastric cancer SGC-7901 cell line in mude mice.
Method①After establishment of xenograft tumor of gastric cancer SGC-7901 cell line, 10 nude mice were equally divided into normal control group and Poria cocos group. The nude mice of each group were gavaged with normal saline (NS) and Poria cocos (0.5 mL) for 32 days, respectively. Tumor volume were measured to draw tumor growth curves and the tumor weight inhibitory rate was calculated with tumor weight (on the 32-day, nude mice were sacrificed to get the xenograft tumors). The expressions of B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), Caspase-3, Caspase-9, and vascular endothelial growth factor (VEGF) were detected by immunohistochemical staining. ②Preparation of drug serum containing Poria cocos. Gastric cancer SGC-7901 cell line were be divided into 2 groups: normal control group and Poria cocos group. Cells of normal control group were treated with serum containing NS, and cells of Poria cocos group were treated with drug serum containing 10% Poria cocos. After 24 hours and 48 hours, Western-blot was used to detect the expressions of Bcl-2 and Bax.
ResultsOn 32-day, the volume and weight of xenograft tumors in normal control group〔(2 652.17±225.01) mm3 and (2.48±0.21) g〕were both higher than those of Poria cocos group〔(1 247.56±277.23) mm3 and (1.28±0.28) g〕, P<0.050. The tumor inhibitory rate in Poria cocos group was 48.39%. The results of immunohistochemical staining showed that, compared with normal control group, Poria cocos could down-regulate the expressions of Bcl-2〔(4.20±1.10)score vs. (8.00±1.20) score〕and VEGF〔(3.80±0.45) score vs. (7.80±1.10) score〕, while up-regulate the expressions of Bax〔(7.40±1.34) score vs. (3.00±0.71) score〕, Caspase-3〔(6.60±1.34) score vs. (2.60±0.55) score〕, and Caspase-9〔(7.20±1.79) score vs. (4.00±1.22) score〕, P<0.050. Compared with normal control group (1.72±0.03), the expression value of Bcl-2 was all higher in 24 h-Poria cocos group (0.96±0.04) and 48 h-Poria cocos group (0.77±0.04), P<0.050, and the expression value was higher in 48 h-Poria cocos group than that of 24 h-Poria cocos group (P<0.050). Compared with normal control group (0.15±0.01), the expression value of Bax was higher in 48 h-Poria cocos group (0.55±0.01), P<0.050, but there was no significant difference between the normal control group and 24 h-Poria cocos group(0.19±0), P>0.050.
ConclusionsPoria cocos can restrain the growth of xenograft tumors for gastric cancer SGC-7901 cell line in mude mice, and the mechanism may be related to mitochondrial apoptosis pathway and the inhibition of expression of VEGF.
Objective
To investigate the effects of adipose-derived stem cells (ADSCs) and endothelial cells (ECs) on the survival and neovascularization of fat tissue transplants.
Methods
The ADSCs were isolated by collagenase digestion from the adipose tissues voluntarily donated by the patients undergoing mastectomy, and subcultured. The passage 3 ADSCs were used for subsequent experiments. The residual fat tissues were used to prepare fat particles (FPs). The human umbilical vein endothelial cells (HUVECs) were used as ECs for subsequent experiments. Eighty healthy male nude mice, aged 4-6 weeks, were randomly divided into 4 groups (n=20). The mice were received subcutaneous injection at the dorsum of 1 mL FPs+0.3 mL normal saline (NS) in control group, 1 mL FPs+2×106 ECs+0.3 mL NS in ECs group, 1 mL FPs+2×106 ADSCs+0.3 mL NS in ADSCs group, and 1 mL FPs+1×106 ECs+1×106 ADSCs+0.3 NS in ADSCs+ECs group. General observations of the injection sites were performed, and the survival of the mice was recorded. At 2, 4, 8, and 12 weeks after injection, grafted fat tissues were firstly assessed by ultrasonography, then they were collected for volume measurement (water displacement method) and histology observation (HE staining and immunofluorescence staining).
Results
All mice survived until the end of experiment. At each time point, no significant difference was noted between groups in ultrasonography assay. There was no significant blood flow signal in the grafted fat tissues, or cysts, calcification, solid occupying in recipient area. Generally, the volume of grafted fat tissues decreased with time in all groups. Specifically, the volumes of grafted fat tissues were larger in ADSCs group and ADSCs+ECs group than that in control group and ECs group (P<0.05) at each time point, and in ADSCs group than in ADSCs+ECs group (P<0.05) at 8 and 12 weeks. HE staining showed that all groups had similar tendencies in general histology changes, and remodeling in ADSCs group was the fastest than in the other groups. By immunofluorescence staining for neovascularization, the new vessels in all groups were increasing with time. The vessel densities were higher in ECs group, ADSCs group, and ADSCs+ECs group than in control group (P<0.05) at each time point, in ADSCs group than in ECs group and ADSCs+ECs group (P<0.05) at 4 weeks, in ADSCs group and ADSCs+ECs group than in ECs group (P<0.05) at 8 and 12 weeks.
Conclusion
ADSCs can significantly increase the survival of transplanted fat tissue, which may be related to promoting the neovascularization.
ObjectiveTo investigate the effectiveness of human placental decidua basalis derived mesenchymal stem cells (PDB-MSCs) in repairing full-thickness skin defect of nude mice.
MethodsHuman placenta samples were obtained from healthy donor mothers with written informed consent. PDB-MSCs were isolated through enzymic digestion and density gradient centrifugation; the 4th passage cells were identified by cellular morphology, cell adipogenic and osteogenic differentiation, and phenotype evaluation. Forty-two 4-5-week-old BALB/c female nude mice were randomly divided into experimental group (n=21) and control group (n=21). The 4th passage PDB-MSCs solution (200 μL, 5×106/mL) was injected into the mice of experimental group via caudal vein; the mice of control group were given equal volume of PBS. The full-thickness skin defect model of 1.5 cm×1.5 cm in size was made after 3 days. The wound healing was observed generally at 1, 2, 4, 7, 14, 18, 21, 25, and 30 days after operation, and the wound healing rate was calculated after wound decrustation. HE staining was used to observe the wound repair at 1, 7, 14, 21, and 31 days; immunofluorescent staining was used for cellular localization at 7, 14, and 31 days after operation.
ResultsCells isolated from human placenta were MSCs which had multipotential differentiation ability and expressed MSCs phenotype. Animals survived to the end of the experiment. The general observation showed that the experimental group had a faster skin repairing speed than the control group; the time for decrustation was 12-14 days in experimental group and was 14-17 days after operation in the control group. The wound healing rate of experimental group was significantly higher than that of control group at 14, 18, and 21 days (t=4.001, P=0.016; t=3.380, P=0.028; t=3.888, P=0.018), but no significance was found at 25 and 30 days (t=1.565, P=0.193; t=1.000, P=0.423). HE staining showed lower inflammatory reaction, and better regeneration of the whole skin and glands with time in the experimental group. The immunofluorescent staining was positive in skin defect area of experimental group at different time points which displayed that human PDB-MSCs existed.
ConclusionThrough enzymic digestion and density gradient centrifugation, PDB-MSCs can be obtained. Pre-stored PDB-MSCs can mobilize to the defect area and participate in repair of nude mice skin.
ObjectiveTo explore the endothelial cells from human peripheral blood and islet of rat co-transplantation under the renal capsule of diabetic nude mice to improve the survival and function of transplanted islet.
MethodsThe endothelial cells from human peripheral blood(5×105)and freshly isolated rat islet cells were co-transplanted under the renal capsule of diabetic nude mice model, then the fasting blood glucose, body weight, peripheral blood C-peptide level, and intraperitoneal glucose tolerance test(IPGTT) were measured to evaluated the islet graft survival and function.
ResultsCompared with the control group, the fasting blood glucose level significantly decreased(P < 0.01), peripheral blood C-peptide level rised(P < 0.01), and body weight increased(P < 0.01) of receptor nude mice in experience group, the IPGTT also improved.
ConclusionThe endothelial cells from human peripheral blood and islet of rat co-transplan-tation can obviously improve the survival and function of transplanted islet of nude mice.
ObjectiveTo investigate the co-transplantation of C57-green fluorescent protein (GFP) mouse epidermis and dermis cells subcutaneously to induce the hair follicle regeneration.
MethodC57-GFP mouse epidermis and dermis were harvested for isolation the mouse epidermis and dermis cells. The morphology of epidermis and dermis mixed cells at ratio of 1:1 of adult mouse, dermis cells of adult mouse, cultured 3rd generation dermis cells were observed by fluorescence microscope. Immunocytochemistry staining was used to detect hair follicle stem cells markers in cultured 3rd generation dermis cells from new born C57-GFP mouse. And then the epidermis and dermis mixed cells of adult mouse (group A), dermis cells of adult mouse (group B), cultured 3rd generation dermis cells of new born mouse (group C), and saline (group D) were transplanted subcutaneously into Balb/c nude mice. The skin surface of nude mice were observed at 4, 5, 6 weeks of transplantation and hair follicle formation were detected at 6 weeks by immunohistochemistry staining.
ResultsThe isolated C57-GFP mouse epidermis and dermis cells strongly expressed the GFP under the fluorescence microscope. Immunocytochemistry staining for hair follicle stem cells markers in cultured 3rd generation dermis cells showed strong expression of Vimentin and α-smooth muscle actin, indicating that the cells were dermal sheath cells; some cells expressed CD133, Versican, and cytokeratin 15. After transplanted for 4-6 weeks, the skin became black at the injection site in group A, indicating new hair follicle formation. However, no color change was observed in groups B, C, and D. Immunohistochemical staining showed that new complete hair follicles structures formed in group A. GFP expression could be only observed in the hair follicle dermal sheath and outer root sheath in group B, and it could also be observed in the hair follicle dermal sheath, outer root sheath, dermal papilla cells, and sweat gland in group C. The expression of GFP was negative in group D.
ConclusionsCo-transplantation of mouse epidermis and dermis cells can induce the hair follicle regeneration by means of interaction of each other. And transplantation of isolated dermis cells or cultured dermis cells individually only partly involved in the hair follicles formation.
Objective
To explore heterotopic chondrogenesis of canine myoblasts induced by cartilage-derived morphogenetic protein 2 (CDMP-2) and transforming growth factor β1 (TGF-β1) which were seeded on poly (lactide-co-glycolide) (PLGA) scaffolds after implantation in a subcutaneous pocket of nude mice.
Methods
Myoblasts from rectus femoris of 1-year-old Beagle were seeded on PLGA scaffolds and cultured in medium containing CDMP-2 and TGF-β1 for 2 weeks in vitro. Then induced myoblasts-PLGA scaffold, uninduced myoblasts-PLGA scaffold, CDMP-2 and TGF-β1-PLGA scaffold, and simple PLGA scaffold were implanted into 4 zygomorphic back subcutaneous pockets of 24 nude mice in groups A, B, C, and D, respectively. At 8 and 12 weeks, the samples were harvested for general observation, HE staining and toluidine blue staining, immunohistochemical staining for collagen type I and collagen type II; the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were determined by RT-PCR, the glycosaminoglycans (GAG) content by Alician blue staining, and the compressive elastic modulus by biomechanics.
Results
In group A, cartilaginoid tissue was milky white with smooth surface and slight elasticity at 8 weeks, and had similar appearance and elasticity to normal cartilage tissue at 12 weeks. In group B, few residual tissue remained at 8 weeks, and was completely degraded at 12 weeks. In groups C and D, the implants disappeared at 8 weeks. HE staining showed that mature cartilage lacuna formed of group A at 8 and 12 weeks; no cartilage lacuna formed in group B at 8 weeks. Toluidine blue staining confirmed that new cartilage cells were oval and arranged in line, with lacuna and blue-staining positive cytoplasm and extracellular matrix in group A at 8 and 12 weeks; no blue metachromatic extracellular matrix was seen in group B at 8 weeks. Collagen type I and collagen type II expressed positively in group A, did not expressed in group B by immunohistochemical staining. At 8 weeks, the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were detected by RT-PCR in group A at 8 and 12 weeks, but negative results were shown in group B. The compressive elastic modulus and GAG content of group A were (90.79 ± 1.78) MPa and (10.20 ± 1.07) μg/mL respectively at 12 weeks, showing significant differences when compared with normal meniscus (P lt; 0.05).
Conclusion
Induced myoblasts-PLGA scaffolds can stably express chondrogenic phenotype in a heterotopic model of cartilage transplantation and represent a suitable tool for tissue engineering of menisci.
ObjectiveTo discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects.MethodsHuman adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts.ResultsThe cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new-born tissue in the transfected group [(32.30±4.06) mg] was significantly heavier than that of the untransfected group [(25.27±3.94) mg] (t=3.929, P=0.001). The mature adipose cells in the transfected group [(126.93±5.36) cells/field] were significantly more than that in the untransfected group [(71.36±4.52) cells/field] (t=30.700, P=0.000). Under fluorescence microscopy, some of the single cell adipocytes showed a network of green fluorescence, indicating the presence of GFP labeled exogenous hADSCs in the tissue. The vascular density of new-born tissue of the transfected group [(16.37±2.76)/field] was significantly higher than that of the untransfected group [(9.13±1.68)/field] (t=8.678, P=0.000).ConclusionThe hADSCs extracted from the lipid part after liposuction can be used as seed cells. After HGF-GFP-LVs transfection and adipose induction, the hADSCs combined with injectable fibrin glue scaffold can construct mature adipose tissue in vivo, which may stimulate angiogenesis, and improve retention rate of new-born tissue.
ObjectiveTo study the feasibility of human adipose-derived stem cells (hADSCs) combined with small intestinal submucosa powder (SISP)/chitosan chloride (CSCl)-β-glycerol phosphate disodium (GP)-hydroxyethyl cellulose (HEC) for adipose tissue engineering.
MethodshADSCs were isolated from human breast fat with collagenase type I digestion, and the third passage hADSCs were mixed with SISP/CSCl-GP-HEC at a density of 1×106 cells/mL. Twenty-four healthy female nude mice of 5 weeks old were randomly divided into experimental group (n=12) and control group (n=12), and the mice were subcutaneously injected with 1 mL hADSCs+SISP/CSCl-GP-HEC or SISP/CSCl-GP-HEC respectively at the neck. The degradation rate was evaluated by implant volume measurement at 0, 1, 2, 4, and 8 weeks. Three mice were euthanized at 1, 2, 4, and 8 weeks respectively for general, histological, and immunohistochemical observations. The ability of adipogenesis (Oil O staining), angiopoiesis (CD31), and localized the hADSCs (immunostaining for human Vimentin) were identified.
ResultsThe volume of implants of both groups decreased with time, but it was greater in experimental group than the control group, showing significant difference at 8 weeks (t=3.348, P=0.029). The general observation showed that the border of implants was clear with no adhesion at each time point;fat-liked new tissues were observed with capillaries on the surface at 8 weeks in 2 groups. The histological examinations showed that the structure of implants got compact gradually after injection, and SISP gradually degraded with slower degradation speed in experimental group;adipose tissue began to form, and some mature adipose tissue was observed at 8 weeks in the experimental group. The Oil O staining positive area of experimental group was greater than that of the control group at each time point, showing significant difference at 8 weeks (t=3.411, P=0.027). Immunohistochemical staining for Vemintin showed that hADSCs could survive at each time point in the experimental group;angiogenesis was most remarkable at 2 weeks, showing no significant differences in CD31 possitive area between 2 groups (P>0.05), but angiogenesis was more homogeneous in experimental group.
ConclusionSISP/CSCl-GP-HEC can use as scaffolds for hADSCs to reconstruct tissue engineered adipose.
Objective
To study effect of carcinoembryonic antigen (CEA) positive targeted lymphocytes on gastric cancer cells in vitro and in vivo.
Methods
The peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood of healthy volunteers. The recombinant vector anti-CEA-scFv-CD3ζ-pcDNA3.0 was transfected into the PBMCs by lipofectamine 2000, by this means, the CEA special lymphocytes were obtained. Meanwhile, the PBMCs transfected with empty plasmid pcDNA3.0 were used as control (empty vector lymphocytes). The different lymphocytes and gastric cancer cells (CEA positive KATOⅢ gastric cancer cells and CEA negative BGC-823 gastric cancer cells) were co-cultured, then the ability to identify the gastric cancer cells and it’s effect on apoptosis of gastric cancer cells were observed at 24 h or 36 h later respectively. The CEA special lymphocytes and empty vector lymphocytes were injected by the tail vein of nude mice bearing gastric cancer cells, then it’s effect on the tumor was observed.
Results
① The CEA special lymphocytes could strongly identify the KATOⅢ gastric cancer cells (identification rate was 72.3%), which could weakly identify the BGC-823 gastric cancer cells (identification rate was 7.8%). ② The apoptosis rate of the co-culture of CEA special lymphocytes and KATOⅢ gastric cancer cells was significantly higher than that of the co-culture of empty vector lymphocytes and KATOⅢ gastric cancer cells (P=0.032), which had no significant difference between the co-culture of CEA special lymphocytes and BGC-823 gastric cancer cells and the co-culture of empty vector lymphocytes and BGC-823 gastric cancer cells (P=0.118). ③ The tumor volume of the co-culture of CEA special lymphocytes and KATOⅢ gastric cancer cells was significantly smaller than that of the co-culture of empty vector lymphocytes and KATOⅢ gastric cancer cells (F=5.010, P<0.01) or the co-culture of CEA special lymphocytes and BGC-823 gastric cancer cells (F=4.982, P<0.01), which had no significant difference between the co-culture of CEA special lymphocytes and BGC-823 gastric cancer cells and the co-culture of empty vector lymphocytes and BGC-823 gastric cancer cells (F=1.210, P>0.05).
Conclusion
CEA special lymphocytes can promote cell apoptosis and inhabit tumor reproduction of CEA positive gastric cancer cells in vitro and in vivo.
Objective To investigate the feasibility and characteristic of tissue engineered testicular prosthesis with highdensity polyethylene(HDPE,trade name: Medpor) and polyglycolic acid(PGA). Methods The chondrocytes were isolated from the swine articular.The PGA scaffold was incorporated with medpor which semidiameters were 6mmand 4mm respectively.Then, the chondrocytes (5×10 7/ml) were seeded onto Medpor-PGA scaffold and cultured for 2 weeks. The ten BALB/C mice were divided into two groups randomly(n=5). In the experimental group, the cell-scaffold construct was implanted into subcutaneous pockets on the back of nude mice. In the control group, the Medpor-PGA scaffold was implanted. The mice of two groups were sacrificed to harvest the newly formed cartilage prosthesis after 8 weeks. Macroscopy, histology and immunohistochemistry observations were made. Results The gross observation showed that on changes were in shape and at size, the color and elasticity were similar to that of normal cartilage and that the cartilage integrated with Medpor in the experimental group; no cartilage formed and fiberlike tissue was found in the control group. HE staining showed that many mature cartilage lacuna formed without blood vessel and some PGA did not degradated completely. Toluidine blue staining showed extracellular matrix had metachromia. Safranin O-fast green staining showed that many proteoglycan deposited and collagen type Ⅱ expression was bly positive. In the control group, Medpor was encapsulated by fiber tissue with rich blood vessel. Conclusion The newly formed complex of Medpor-PGA and cells was very similar to testicle in gross view and to normal cartilage in histology. This pilot technique of creating testicular prosthesis by incorporating tissue-engineered cartilage with Medpor demonstrated success.