1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "3D printing" 23 results
        • Preliminary exploration of the domestic balloon-expandable valve in the treatment of degenerated tricuspid bioprosthetic valve via transcatheter "valve-in-valve" technology

          ObjectiveTo discuss the operation skill and clinical effects of using domestic balloon-expandable Prizvalve? transcatheter "valve-in-valve" to treat the degenerated bioprosthesis in the tricuspid position.MethodsAll the admitted surgical tricuspid valve bioprosthetic valve replacement patients were evaluated by computerized tomography angiography (CTA), ultrasound, and 3D printing technology, and 2 patients with a degenerated bioprosthesis were selected for tricuspid valve "valve-in-valve" operation. Under general anesthesia, the retro-preset Prizvalve? system was implanted into degenerated tricuspid bioprosthesis via the femoral vein approach under the guidance of transesophageal echocardiographic and fluoroscopic guidance.ResultsTranscatheter tricuspid valve implantation was successfully performed in both high-risk patients, and tricuspid regurgitation disappeared immediately. The operation time was 1.25 h and 2.43 h, respectively. There was no serious complication in both patients, and they were discharged from the hospital 7 days after the operation.ConclusionThe clinical effect of the degenerated tricuspid bioprosthetic valve implantation with domestic balloon-expandable valve via femoral vein approach "valve-in-valve" is good. Multimodality imaging and 3D printing technology can safely and effectively guide the implementation of this innovative technique.

          Release date:2021-07-28 10:22 Export PDF Favorites Scan
        • Research progress of shear-thinning bioink in 3D bioprinting tissue trachea

          Shear thinning is an ideal feature of bioink because it can reduce the chance of blocking. For extrusion based biological printing, bioink will experience shear force when passing through the biological printer. The shear rate will increase with the increase of extrusion rate, and the apparent viscosity of shear-thinning bioink will decrease, which makes it easier to block, thus achieving the structural fidelity of 3D printing tissue. The manufacturing of complex functional structures in tissue trachea requires the precise placement and coagulation of bioink layer by layer, and the shear-thinning bioink may well meet this requirement. This review focuses on the importance of mechanical properties, classification and preparation methods of shear-thinning bioink, and lists its current application status in 3D printing tissue trachea to discuss the more possibilities and prospects of this biological material in tissue trachea.

          Release date: Export PDF Favorites Scan
        • The Influence of 3D Printing Assisting Educational Intervention on the Anxiety and Sleep Outcomes in the Patients with Trauma

          ObjectiveTo explore the influence of 3D printing assisting educational intervention on the anxiety and sleep outcomes in the patients with trauma. MethodA total of 40 patients were selected between October 2014 and June 2015. The patients were randomly divided into the intervention group and control group with 20 patients in each. The outcomes from admitted to the 7th day after the surgery were evaluated, including visual analogue scale (VAS) scores, state-trait anxiety inventory (STAI) score, Likert score, and the condition of anxiety, pain, and sleep outcomes. ResultsThe differences in VAS scores, STAI scores, and Likert scores between the two groups were significant (P<0.05). Conclusions3D printing assisting educational intervention is a useful intervention that can improve post-operative outcomes for the patients with trauma.

          Release date: Export PDF Favorites Scan
        • Application of 3D printed lumbar puncture models in orthopedic clinical teaching

          ObjectiveTo explore the feasibility of lumbar puncture models based on 3D printing technology for training junior orthopaedic surgeons to find the optimal pedicle screw insertion points.MethodsMimics software was used to design 3D models of lumbar spine with the optimal channels and alternative channels. Then, the printed lumbar spine models, plasticine, and cloth were used to build lumbar puncture models. From January 2018 to June 2019, 43 orthopedic trainees performed simulated operations to search for the insertion points of pedicle screws base on the models. The operations were performed once a day for 10 consecutive days, and the differences in operation scores and operation durations of the trainees among the 10 days were compared.ResultsAll the trainees completed the surgical training operations successfully, and there were significant differences in the operation scores (13.05±2.45, 14.02±3.96, 17.58±3.46, 21.02±2.04, 23.40±4.08, 25.14±3.72, 27.26±6.09, 33.37±4.23, 35.00±4.15, 38.49±1.70; F=340.604, P<0.001) and operation durations [(22.51±4.28), (19.93±4.28), (18.05±2.89), (17.05±1.76), (16.98±1.97), (15.47±1.74), (13.51±1.42), (12.60±2.17), (12.44±1.71), (11.91±1.87) minutes; F=102.359, P<0.001] among the 10 days.ConclusionThe 3D models of lumbar puncture are feasible and repeatable, which can contribute to surgical training.

          Release date:2019-09-06 03:51 Export PDF Favorites Scan
        • Relation between the length of navigation pipe and accuracy of screw placement in cervical pedicle screw placement assisted by 3D printed navigation template

          Objective To evaluate the deviation between actual and simulated screw placement after cervical pedicle screw placement assisted by 3D printed navigation template, and analyze the correlation between screw placement deviation and navigation pipe length. Methods A total of 40 patients undergoing cervical 1-7 pedicle screw insertion assisted by 3D printed navigation template in Zigong Fourth People’s Hospital between February 2018 and August 2020 were included in this prospective study. These patients were divided into 3 groups randomly, including 12 patients with a 5-mm pipe length (5 mm group), 13 patients with a 10-mm pipe length (10 mm group), and 15 patients with a 15-mm pipe length (15 mm group). Three-dimensional modeling was performed on preoperative cervical CT images of these patients and simulated pedicle screw was placed. Individualized pedicle screw navigation templates were designed according to the position and direction of simulated pedicle screws, and 3D printing was performed on the cervical model and navigation templates. Preoperative 3D printed model and navigation templates were used to simulate the surgical process to confirm the safety of screws. During the operation, pedicle screw placement was performed according to the preoperative design and simulated surgical process. The postoperative CT images were registered with the preoperative CT images in 3D model. The safety of screw placement was evaluated by the postoperative screw placement Grade, and the accuracy of screw placement was evaluated by measuring the deviation of screw placement point and the deviation of screw placement direction in horizontal plane (inclination angle) and sagittal plane (head inclination angle). The influence of different navigation pipe lengths on the safety and accuracy of screw placement was analyzed. Results A total of 164 pedicle screws were inserted with navigation template assistance, including 48 screws (38 in Grade 0 and 10 in Grade 1) in the 5 mm group, 52 screws in the 10 mm group (all in Grade 0), and 64 screws (52 in Grade 0 and 12 in Grade 1) in the 15 mm group, and the difference in the grade among the three groups was statistically significant (P<0.05). When the navigation pipe length was 5, 10, and 15 mm, respectively, the screw entry point deviation was (1.87±0.63), (1.44±0.63), and (1.66±0.54) mm, respectively, the inclination angle deviation was (2.72±0.25), (0.90±0.21), and (1.84±0.35)°, respectively, and the head inclination angle deviation was (8.63±1.83), (7.15±1.38), and (8.24±1.52)°, respectively. The deviations in the 10 mm group were all significantly less than those in the other two groups (P<0.05). Conclusions In the cervical pedicle screw placement assisted by navigation template, all the screws were Grade 0 or Grade 1, with high safety. The mean deviation of the screw entry point is within 2 mm, with high accuracy. When the length of navigation pipe is 10 mm, the safety and accuracy of screw placement can be fully guaranteed.

          Release date:2021-11-25 03:04 Export PDF Favorites Scan
        • Clinical application and analysis of anatomical types of bilateral pulmonary arteries through three-dimensional reconstruction combined with three-dimensional printing

          ObjectiveTo explore the clinical applications of 3D-CT reconstruction combined with 3D printing in the analysis of anatomical types and variations of bilateral pulmonary arteries. MethodsFrom January 2019 to February 2022, the clinical data of 547 patients who underwent anatomical lung lesion resection in our hospital were retrospectively collected. They were divided into a 3D-CT reconstruction plus printing technology group (n=298, 87 males and 211 females aged 53.84±12.94 years), a 3D-CT reconstruction group (n=148, 55 males and 93 females aged 54.21±11.39 years), and a non-3D group (n=101, 28 males and 73 females aged 53.17±10.60 years). ResultsIn the 3D-CT reconstruction plus printing technology group, the operation time of patients (right: 125.61±20.99 min, left: 119.26±28.44 min) was shorter than that in the 3D-CT reconstruction group (right: 130.48±11.28 min, left: 125.51±10.59 min) and non-3D group (right: 134.45±10.20 min, left: 130.44±9.53 min), which was not associated with the site of surgery; intraoperative blood loss (right: 20.92±8.22 mL, left: 16.85±10.43 mL) was not statistically different compared with the 3D-CT reconstruction group (right: 21.13±8.97 mL, left: 19.09±7.01 mL), but was less than that of the non-3D group (right: 24.44±10.72 mL, left: 23.72±11.45 mL). Variation was found in the right pulmonary artery of 7 (3.91%) patients and in the left pulmonary artery of 21 (17.65%) patients. We first found four-branched lingual pulmonary artery in 2 patients.ConclusionPreoperative CT image computer-assisted 3D reconstruction combined with 3D printing technology can help surgeons to formulate accurate surgical plans, shorten operation time and reduce intraoperative blood loss.

          Release date:2022-07-28 10:21 Export PDF Favorites Scan
        • Application of three-dimensional printing technique in surgical treatment of congenital heart disease

          Objective To evaluate the application of three-dimensional printing technique in surgical treatments on complex congenital heart diseases. Methods Two patients were enrolled with complex congenital heart diseases. The computerized tomography data were used to build the 3D architecture of cardiac anomalies. The White-Jet-Process technique was used to print the models with 1∶1 ratio in size. The models were used to make the treatment strategy making, young surgeon training and operation simulation. Results The full color and hollowed-out cardiac models with 1∶1 ration in size were printed successfully. They were transected at the middle point of vertical axis, which was conveniently to explore the intracardiac anomalies. However, for patient 1, the model lost the atrial septal defect. Taking the two models as references, operation group held preoperative consultation, operation simulation, and finally, the operation plans were determined for the two patients. Both the two operation were carried out smoothly. Conclusion Although the limitations of 3D printing still exist in the application for congenital heart diseases, making the preoperative plan and operation simulation via 3D cardiac model could enhance the understanding of following operation and procedure details, which could improve the tacit cooperation among operation group members. Furthermore, operation results also could be improved potentially. Therefore, the cardiac 3D printing should be popularized in clinic in the future.

          Release date:2018-07-27 02:40 Export PDF Favorites Scan
        • Effect of 3D-printed heart model on congenital heart disease education: A systematic review and meta-analysis

          Objective To evaluate the effect of the 3D-printed heart model on congenital heart disease (CHD) education through systematic review and meta-analysis. Methods The literature about the application of the 3D-printed heart model in CHD education was systematically searched by computer from PubMed, Web of Science, and EMbase from inception to November 10, 2022. The two researchers independently screened the literature, extracted data and evaluated the quality of the literature. Cochrane literature evaluation standard was used to evaluate the quality of randomized controlled trials, and JBI evaluation scale was used for cross-sectional and cohort studies. ResultsAfter screening, 23 literatures were included, including 7 randomized controlled trials, 15 cross-sectional studies and 1 cohort study. Randomized controlled trials were all at low-risk, cross-sectional studies and and the cohort study had potential bias. There were 4 literatures comparing 3D printing heart model with 2D image teaching and the meta-analysis result showed that the effect of 3D printing heart model on theoretical achievement was more significant compared with 2D image teaching (SMD=0.31, 95%CI –0.28 to 0.91, P=0.05). Conclusion The application of the 3D-printed heart model in CHD education can be beneficial. But more randomized controlled trials are still needed to verify this result.

          Release date:2024-08-02 10:43 Export PDF Favorites Scan
        • Application of 3D printing in the diagnosis and surgical treatment of congenital tracheal stenosis

          Objective To assess the application value of 3-dimensional(3D) printing technology in surgical treatment for congenital tracheal stenosis. Methods We retrospectively analyzed the clinical data of preoperative diagnosis, intra-operative decision-making and postoperative follow-up of four children with congenital tracheal stenosis under the guidance of 3D printing in our hospital between February 2013 and May 2014. There were 3 males and 1 female aged 23.0±7.1 months. Among them, two children were with pulmonary artery sling, one with ventricular septal defect, and the other one with tetralogy of Fallot. The airway stenosis was diagnosed preoperatively by chest CT scan and 3D printing tracheal models, and was confirmed by the help of bronchoscopy under anesthesia. During operation the associated cardiac malformation was corrected firstly under extracorporeal circulation followed by tracheal malformation remedy. The design and implementation of tracheal operation plans were guided by the shape and data from 3D printing trachea models. There were two patients with long segment of tracheal stenosis who received slide anastomosis. And the other two patients were characterized with tracheal bronchus, one of which combined ostial stenosis of right bronchial performed extensive slide anastomosis, and the other one performed end to end anastomosis. Results All the children’s preoperative 3D printing trachea models were in accord with bronchoscopy and intra-operative exploration results. Intra-operative bronchoscopy confirmed that all tracheal stenosis cured completely. All anastomotic stomas were of integrity, and all the luminals were fluent. There was no operative death or no serious complication. During 1-2 years follow-up, all patients breathed smoothly and their airways were of patency by postoperative 3D printing trachea model. Conclusion 3D printing can provide a good help to congenital tracheal stenosis in preoperative diagnosis, the design of operation plan, intra-operative decision-making and manipulation, which can improve the operation successful rate of tracheal stenosis.

          Release date:2017-03-24 03:45 Export PDF Favorites Scan
        • Application of 3D printing technology in the diagnosis and treatment of valvular heart disease

          The incidence of valvular heart disease (VHD) increases with age, and its principal therapy is valve replacement. However, in recent years, the emergence of transcatheter interventions has changed the traditional therapy, making high-risk patients of surgery see dawn of hope. 3D printing technology has developed rapidly since it was applied to the medical field in 1990. Moreover, it has been widely applied in many surgical majors via refined reduction technology. However, the application of 3D printing technology in cardiovascular surgery is still in the preliminary stage, especially in the field of VHD. This article aims to review basic principles of 3D printing technology, its advantages in the therapy of VHD, and its current status of clinical application. Furthermore, this article elaborates current problems and looks forward to the future development direction.

          Release date:2022-02-15 02:09 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品