Objective To compare the effect of three-dimensional visual (3DV) model, three-dimensional printing (3DP) model and computer-aided design (CAD) modified 3DP model in video-assisted thoracoscopic surgery (VATS) sublobular resection. MethodsThe clinical data of patients who underwent VATS sublobular resection in the Affiliated Hospital of Hebei University from November 2021 to August 2022 were retrospectively analyzed. The patients were divided into 3 groups including a 3DV group, a 3DP group and a CAD-3DP group according to the tools used. The perioperative indexes and subjective evaluation of operators, patients and their families were compared. ResultsA total of 22 patients were included. There were 5 males and 17 females aged 32-77 (56.95±12.50) years. There were 9 patients in the 3DV group, 6 patients in the 3DP group, and 7 patients in the CAD-3DP group. There was no statistical difference in the operation time, intraoperative blood loss, drainage volume, hospital stay time or postoperative complications among the groups (P>0.05). Based on the subjective evaluations of 4 surgeons, the CAD-3DP group was better than the 3DV group in the preoperative planning efficiency (P=0.025), intuitiveness (P=0.045) and doctor-patient communication difficulty (P=0.034); the CAD-3DP group was also better than the 3DP group in the overall satisfaction (P=0.023), preoperative planning difficulty (P=0.046) and efficiency (P=0.014). Based on the subjective evaluations of patients and their families, the CAD-3DP group was better than the 3DP group in helping understand the vessel around the tumor (P=0.016), surgical procedure (P=0.020), procedure selection (P=0.029), and overall satisfaction (P=0.048); the CAD-3DP group was better than the 3DV group in helping understand the tumor size (P=0.038). ConclusionCAD-modified 3DP model has certain advantages in pre-planning, intraoperative navigation and doctor-patient communication in the VATS sublobectomy.
Objective To explore the early clinical effect of 3D printing external fixed guide combined with video-assisted thoracic surgery (VATS) in the treatment of flail chest, and to provide evidence for the promotion of this technology. Methods Patients with flail chest treated in our hospital from January 2010 to January 2023 were retrospectively selected as the study objects. The trial group was treated with 3D printed external fixation guide combined with VATS, and the control group was treated with open reduction internal fixation. Operation time, intraoperative blood loss, closed thoracic drainage time, thoracic volume recovery, visual analogue scale (VAS) score 1 month after surgery and complications were compared between the two groups. Results A total of 40 patients were included, 20 in each group. In the experimental group, there were 13 males and 7 females, with an average age of 45.7±3.8 years. In the control group, there were 14 males and 6 females, with an average age of 47.3±4.1 years. There was no statistical difference in gender, age, number of rib fractures or VAS between the two groups (P>0.05). The surgery was successful in both groups, the wounds healed in stage Ⅰ, and the pain symptoms were significantly reduced. No postoperative complications occurred in the trial group, while chronic pain occurred in 1 patient, fracture malunion occurred in 1 patient and incision infection occurred in 1 patient in the control group, with a complication rate of 15.0%. Operation time, intraoperative blood loss and closed thoracic drainage time in trial group were lower than those in control group (P<0.05). There was no statistical difference in the recovery of thoracic volume and VAS at 1 month after operation (P>0.05). Conclusion 3D printing external fixation guide combined with VATS in the treatment of flail chest has satisfactory early curative effect, which has the advantages of minimally invasive, high efficiency, rapid recovery and reducing postoperative complications. This method can effectively reconstruct the shape of the chest, restore the volume of the chest.
ObjectiveTo evaluate the clinical value of three-dimensional (3D) printing model in accurate and minimally invasive treatment of double outlet right ventricle (DORV).MethodsFrom August 2018 to August 2019, 35 patients (22 males and 13 females) with DORV aged from 5 months to 17 years were included in the study. Their mean weight was 21.35±8.48 kg. Ten patients who received operations guided by 3D printing model were allocated to a 3D printing model group, and the other 25 patients who received operations without guidance by 3D printing model were allocated to a non-3D printing model group. Preoperative transthoracic echocardiography and CT angiography were performed to observe the location and diameter of ventricular septal defect (VSD), and to confirm the relationship between VSD and double arteries.ResultsThe McGoon index of patients in the 3D printing model group was 1.91±0.70. There was no statistical difference in the size of VSD (13.20±4.57 mm vs. 13.40±5.04 mm, t=?0.612, P=0.555), diameter of the ascending aorta (17.10±2.92 mm vs. 16.90±3.51 mm, t=0.514, P=0.619) or diameter of pulmonary trunk (12.50±5.23 mm vs. 12.90±4.63 mm, t=?1.246, P=0.244) between CT and 3D printing model measurements. The Pearson correlation coefficients were 0.982, 0.943 and 0.975, respectively. The operation time, endotracheal intubation time, ICU stay time and hospital stay time in the 3D printing model group were all shorter than those in the non-3D printing model group (P<0.05).ConclusionThe relationship between VSD and aorta and pulmonary artery can be observed from a 3D perspective by 3D printing technology, which can guide the preoperative surgical plans, assist physicians to make reasonable and effective decisions, shorten intraoperative exploration time and operation time, and decrease the surgery-related risks.
The esophageal disease is a major clinical disease. The esophageal stent has extensive clinical applications in the treatment of esophageal diseases. However, the clinical application of esophageal stent is limited, because there are lots of complications after implantation of esophageal stent. Biodegradable esophageal stent has two advantages: biodegradability and good histocompatibility. It is expected to solve a variety of complications of esophageal stent and provide a new choice for the treatment of esophageal diseases. Standardized esophageal stents are not fully applicable to all patients. The application of 3D printing technology in the manufacture of biodegradable esophageal stent can realize the individualized treatment of esophageal stent. And meanwhile, the 3D printing technology can reduce the manufacturing cost of the stent. This review aimed to summarize and discuss the application of esophageal stent, the current research status and prospect of biodegradable esophageal stent and the prospect of 3D printing technology in degradable esophageal stent, hoping to provide evidence and perspectives for the research of biodegradable esophageal stent.
The incidence of valvular heart disease (VHD) increases with age, and its principal therapy is valve replacement. However, in recent years, the emergence of transcatheter interventions has changed the traditional therapy, making high-risk patients of surgery see dawn of hope. 3D printing technology has developed rapidly since it was applied to the medical field in 1990. Moreover, it has been widely applied in many surgical majors via refined reduction technology. However, the application of 3D printing technology in cardiovascular surgery is still in the preliminary stage, especially in the field of VHD. This article aims to review basic principles of 3D printing technology, its advantages in the therapy of VHD, and its current status of clinical application. Furthermore, this article elaborates current problems and looks forward to the future development direction.
3D printing technology has a promising prospect of medical use and clinical value, and may play an important role in the field of thoracic and cardiovascular surgery, such as preoperative diagnosis, surgical planning, surgical approach alternatives and organ replacement. This review focuses on the development of 3D printing technology in recent years and its use and prospect in the field of thoracic and cardiovascular surgery including surgical teaching and simulation, personalized prosthesis implantation, and artificial organ transplantation.
In recent years, 3D printing technology, as a new material processing technology, can precisely control the macroscopic and microstructure of biological scaffolds and has advantages that traditional manufacturing methods cannot match in the manufacture of complex bone repair scaffolds. Magnesium ion is one of the important trace elements of the human body. It participates in many physiological activities of the body and plays a very important role in maintaining the normal physiological function of the organism. In addition, magnesium ions also have the characteristics of promoting the secretion of osteogenic proteins by osteoblasts and osteogenic differentiation of mesenchymal stem cells. By combining with 3D printing technology, more and more personalized magnesium-based biological scaffolds have been produced and used in bone regeneration research in vivo and in vitro. Therefore, this article reviews the application and research progress of 3D printing magnesium-based biomaterials in the field of bone regeneration and repair.
Mitral valve disease is the most common cardiac valve disease. The main treatment of mitral valve disease is surgery or interventional therapy. However, as the anatomy of mitral valve is complicated, the operation is particularly difficult. As a result, it requires sophisticated experiences for surgeons. Three-dimensional (3D) printing technology can transform two-dimensional medical images into 3D solid models. So it can provide clear spatial anatomical information and offer safe and personalized treatment for the patients by simulating surgery process. This article reviews the applications of 3D printing technology in the treatment of mitral valve disease.
ObjectiveTo explore the influence of 3D printing assisting educational intervention on the anxiety and sleep outcomes in the patients with trauma.
MethodA total of 40 patients were selected between October 2014 and June 2015. The patients were randomly divided into the intervention group and control group with 20 patients in each. The outcomes from admitted to the 7th day after the surgery were evaluated, including visual analogue scale (VAS) scores, state-trait anxiety inventory (STAI) score, Likert score, and the condition of anxiety, pain, and sleep outcomes.
ResultsThe differences in VAS scores, STAI scores, and Likert scores between the two groups were significant (P<0.05).
Conclusions3D printing assisting educational intervention is a useful intervention that can improve post-operative outcomes for the patients with trauma.
Objective
To assess the application value of 3-dimensional(3D) printing technology in surgical treatment for congenital tracheal stenosis.
Methods
We retrospectively analyzed the clinical data of preoperative diagnosis, intra-operative decision-making and postoperative follow-up of four children with congenital tracheal stenosis under the guidance of 3D printing in our hospital between February 2013 and May 2014. There were 3 males and 1 female aged 23.0±7.1 months. Among them, two children were with pulmonary artery sling, one with ventricular septal defect, and the other one with tetralogy of Fallot. The airway stenosis was diagnosed preoperatively by chest CT scan and 3D printing tracheal models, and was confirmed by the help of bronchoscopy under anesthesia. During operation the associated cardiac malformation was corrected firstly under extracorporeal circulation followed by tracheal malformation remedy. The design and implementation of tracheal operation plans were guided by the shape and data from 3D printing trachea models. There were two patients with long segment of tracheal stenosis who received slide anastomosis. And the other two patients were characterized with tracheal bronchus, one of which combined ostial stenosis of right bronchial performed extensive slide anastomosis, and the other one performed end to end anastomosis.
Results
All the children’s preoperative 3D printing trachea models were in accord with bronchoscopy and intra-operative exploration results. Intra-operative bronchoscopy confirmed that all tracheal stenosis cured completely. All anastomotic stomas were of integrity, and all the luminals were fluent. There was no operative death or no serious complication. During 1-2 years follow-up, all patients breathed smoothly and their airways were of patency by postoperative 3D printing trachea model.
Conclusion
3D printing can provide a good help to congenital tracheal stenosis in preoperative diagnosis, the design of operation plan, intra-operative decision-making and manipulation, which can improve the operation successful rate of tracheal stenosis.