1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "40 Hz light flicker" 2 results
        • Study on effects of 40 Hz light flicker stimulation on spatial working memory in rats and its neural mechanism

          Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive impairment, with the predominant clinical diagnosis of spatial working memory (SWM) deficiency, which seriously affects the physical and mental health of patients. However, the current pharmacological therapies have unsatisfactory cure rates and other problems, so non-pharmacological physical therapies have gradually received widespread attention. Recently, a novel treatment using 40 Hz light flicker stimulation (40 Hz-LFS) to rescue the cognitive function of model animals with AD has made initial progress, but the neurophysiological mechanism remains unclear. Therefore, this paper will explore the potential neural mechanisms underlying the modulation of SWM by 40 Hz-LFS based on cross-frequency coupling (CFC). Ten adult Wistar rats were first subjected to acute LFS at frequencies of 20, 40, and 60 Hz. The entrainment effect of LFS with different frequency on neural oscillations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was analyzed. The results showed that acute 40 Hz-LFS was able to develop strong entrainment and significantly modulate the oscillation power of the low-frequency gamma (lγ) rhythms. The rats were then randomly divided into experimental and control groups of 5 rats each for a long-term 40 Hz-LFS (7 d). Their SWM function was assessed by a T-maze task, and the CFC changes in the HPC-mPFC circuit were analyzed by phase-amplitude coupling (PAC). The results showed that the behavioral performance of the experimental group was improved and the PAC of θ-lγ rhythm was enhanced, and the difference was statistically significant. The results of this paper suggested that the long-term 40 Hz-LFS effectively improved SWM function in rats, which may be attributed to its enhanced communication of different rhythmic oscillations in the relevant neural circuits. It is expected that the study in this paper will build a foundation for further research on the mechanism of 40 Hz-LFS to improve cognitive function and promote its clinical application in the future.

          Release date:2023-12-21 03:53 Export PDF Favorites Scan
        • Effects of 40 Hz light flicker stimulation on hippocampal-prefrontal neural activity characteristics during working memory tasks in Alzheimer’s disease model rats

          40 Hz light flicker stimulation is deemed to hold considerable promise in the treatment of Alzheimer’s disease (AD). However, whether its long-term effect can improve working memory and its related mechanisms remains to be further explored. In this study, 21 adult Wistar rats were randomly divided into the AD light-stimulation group, the AD group and the control group. AD models were established in the first two of these groups, with the light-stimulation group receiving long-term 40 Hz light flicker stimulation. Working memory performance across groups was subsequently evaluated using the T-maze task. To investigate the potential neural mechanisms underlying the effects of 40 Hz light stimulation on working memory, we examined changes in neuronal excitability within the hippocampus (HPC) and medial prefrontal cortex (mPFC), as well as alterations in inter-regional synchronization of neural activity. The findings demonstrated that prolonged 40 Hz light stimulation significantly improved working memory performance in AD model rats. Furthermore, the intervention enhanced the synchronization of neural activity between the hippocampus (HPC) and medial prefrontal cortex (mPFC), as well as the efficiency of information transfer, primarily mediated by theta and low-frequency gamma oscillations. This study provides theoretical support for exploring the mechanisms of 40 Hz light flicker stimulation and its further clinical application in the prevention and treatment of Alzheimer’s disease.

          Release date:2025-12-22 10:16 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品