1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Adipose" 56 results
        • THE IN VITRO STUDY OF THE HUMAN ADIPOSE TISSUEDERIVED STROMAL CELLS DIFFERENTIATING INTO THE NEURONLIKE CELLS

          Objective To investigate the possibility of theadipose tissue-derived stromal cells(ADSCs) to differentiate into the neuron-like cells and to explore a new cell source for the transplantation related to the central nervous system. Methods Adipose was digested by collagenase, cultured in the fetal bovine serum containing a medium. Trypse was used to digest the cells and the cell passage was performed. The 3rd to the 9th passage ADSCs were used to make an induction. Isobutylmethylxanthine, indomethacin, insulin, and dexamethasone were used to induce the ADSCs to differentiate into the neuron-like cells and adipocytes. Sudan black B and immunocytochemistry were used to identify the cells. Results A population of the ADSCs could be isolated from the adult human adipose tissue, they were processed to obtain a fibroblast-like population of the cells and could be maintained in vitro for an extendedperiod with the stable population doubling, and they were expanded as the undifferentiated cells in culture for more than 20 passages, which indicated their proliferative capacity. They expressed vimentin and nestin, and characteristics of the neuron precursor stem cells at an early stage of differentiation. And the majority of the ADSCs also expressed the neuron-specific enolase and βⅢ-tubulin, characteristics of the neurons. Isobutyl-methyxanthine, indomethacin, insulin, and dexamethasone induced 40%-50% of ADSCs to differentiate into adipocytes and 0.1%0.2% of ADSCs into neuron-like cells. The neuron-like cells had a complicated morphology of the neurons, and they exhibited a neuron phenotype, expressed nestin, vimentin, neuron-specific enolase and βⅢ-tubulin, but some neuron-like cells also expressed thesmooth muscle actin (SMA), and the characteristics of the smooth muscle cells; however, the neurons from the central nervous system were never reported to express this kind of protein. Therefore, the neuron-like cells from the ADSCs could be regarded as functional neurons. Conclusion Ourresults support the hypothesis that the adult adipose tissue contains the stem cells capable of differentiating into the neuron-like cells, and they can overcome their mesenchymal commitment, which represents an alternative autologous stemcell source for transplantation related to the central nervous system.

          Release date:2016-09-01 09:26 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF ADIPOSE TISSUE-DERIVED STROMAL CELLS

          Objective To review research progress of adipose tissuederived stromal cells (ADSCs).Methods The recent articles on ADSCs were extensively reviewed, and the culture and differentiation ability of ADSCs were investigated.Results A population of stem cells could be isolated from adult adipose tissue, they were processed to obtain a fibroblast-like population of cells and could be maintained in vitro for extended periods with stable population doubling. The majority of the isolated cells were mesenchymal origin, with a few pericytes,endothelial cells and smooth muscle cells. ADSCs could be induced to differentiate intomultiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic and adipogenic cells, they could also differentiate into nerve cells.Conclusion ADSCs can substitute mesenchymal stem cells and become an alternative stem cells source for tissue engineering.

          Release date:2016-09-01 09:33 Export PDF Favorites Scan
        • RELATED ISSUES IN CLINICAL TRANSLATIONAL APPLICATION OF ADIPOSE-DERIVED STEM CELLS

          Objective To introduce the related issues in the clinical translational application of adipose-derived stem cells (ASCs). Methods The latest papers were extensively reviewed, concerning the issues of ASCs production, management, transportation, use, and safety during clinical application. Results ASCs, as a new member of adult stem cells family, bring to wide application prospect in the field of regenerative medicine. Over 40 clinical trials using ASCs conducted in 15 countries have been registered on the website (http://www.clinicaltrials.gov) of the National Institutes of Health (NIH), suggesting that ASCs represents a promising approach to future cell-based therapies. In the clinical translational application, the related issues included the quality control standard that management and production should follow, the prevention measures of pathogenic microorganism pollution, the requirements of enzymes and related reagent in separation process, possible effect of donor site, age, and sex in sampling, low temperature storage, product transportation, and safety. Conclusion ASCs have the advantage of clinical translational application, much attention should be paid to these issues in clinical application to accelerate the clinical translation process.

          Release date:2016-08-31 04:21 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON ADIPOSE-DERIVED STEM CELLS TRANSFECTED BY BONE MORPHOGENETIC PROTEIN 14 CO-CULTURE WITH CHONDROCYTES

          Objective To evaluate the synergistic effect of bone morphogenetic protein 14 (BMP-14) and chondrocytes co-culture on chondrogenesis of adipose-derived stem cells (ADSCs) so as to optimize the source of seed cells for cartilage tissue engineering. Methods ADSCs and chondrocytes were isolated and cultured respectively from articular cartilage and subcutaneous fat of 2 male New Zealand white rabbits (weighing, 1.5 kg and 2.0 kg). The cells at passage 3 were harvested for experiment. ADSCs were identified by osteogenic induction (alizarin red staining), chondrogenic induction (alcian blue staining), and adipogenic induction (oil red O staining). The optimum multiplicity of infection (MOI) of transfection of adenovirus-cytomegalovirus (CMV)-BMP-14-internal ribosome entry site (IRES)-human renilla reniformis green fluorescent protein 1 (hrGFP-1) was determined and then ADSCs were transfected by the optimum MOI. The experiment was divided into 5 groups: group A, co-culture of ADSCs transfected by BMP-14 and chondrocytes (1 ∶ 1 in Transwell chambers); group B, co-culture of ADSCs and chondrocytes (1 ∶ 1 in Transwell chambers); group C, culture of ADSCs transfected by BMP-14; group D, simple chondrocytes culture; and group E, simple ADSCs culture. After 3 weeks, the glycosaminoglycan (GAG) content was detected by alcian blue staining; the expressions of collagen type II and BMP-14 protein were detected by Western blot; expression of Sox-9 gene was detected by RT-PCR. Results The cultured cells were proved to be ADSCs by identification. Inverted fluorescence microscope showed optimum transfection effect when MOI was 150. GAG content, expressions of collagen type II and BMP-14 protein, expression of Sox-9 gene were significantly higher in groups A and C than in the other 3 groups, in group A than in group C (P lt; 0.05), and groups B and D were significantly higher than group E (P lt; 0.05), but no significant difference was found between groups B and D (P gt; 0.05). Conclusion It can promote differentiation of ADSCs into chondrocytes by BMP-14 co-culture with chondrocytes, and they have a synergistic effect.

          Release date:2016-08-31 04:07 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON FLUORESCENT LABELING AND OPTIMIZATION METHOD OF PURIFYING HUMAN STROMAL VASCULAR FRACTION CELLS

          Objective To find a kind of simple and effective method for purifying and label ing stromal vascular fraction cells (SVFs) so as to provide a theoretical basis for cl inical application of SVFs. Methods The subcutaneous adi pose tissue were harvested form volunteers. The adi pose tissue was digested with 0.065%, 0.125%, and 0.185% type I collagenase,respectively. SVFs were harvested after digestion and counted. After trypan blue staining, the rate of viable cells was observed. SVFs was labeled by 1, 1’-dioctadecyl-3, 3, 3’, 3’-2-tetramethy-lindocyanine perchlorate (DiI). The fluorescent label ing and growth was observed under an inverted fluorescence microscope. MTT assay was used to detect cell proliferation. Results The number of SVFs was (138.68 ± 11.64) × 104, (183.80 ± 10.16) × 104, and (293.07 ± 8.31) × 104 in 0.065% group, 0.125% group, and 0.185% group, respectively, showing significant differences among 3 groups (P lt; 0.01). The rates of viable cells were 91% ± 2%, 90% ± 2%, and 81% ± 2% in 0.065% group, 0.125% group, and 0.185% group, respectively, and it was significantly higher in 0.065% group and 0.125% group than in 0.185% group (P lt; 0.01), but no significant difference was found between 0.065% group and 0.125% group (P=0.881). Inverted fluorescence microscope showed that the cell membranes could be labeled by DiI with intact cell membrane, abundant cytoplasm, and good shape, but nucleus could not labeled. SVFs labeled by DiI could be cultured successfully and maintained a normal form. MTT assay showed that similar curves of the cell growth were observed before and after DiI labeled to SVFs. Conclusion The optimal collagenase concentration for purifying SVFs is 0.125%. DiI is a kind of ideal fluorescent dye for SVFs.

          Release date:2016-08-31 04:23 Export PDF Favorites Scan
        • RECOMBINANT ADENOVIRUS-MEDIATED BONE MORPHOGENETIC PROTEIN 9 AND ERYTHROPOIETIN GENES CO-TRANSFECTION IN PROMOTING OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS IN VITRO

          ObjectiveTo investigate the effect of recombinant adenovirus-mediated bone morphogenetic protein 9 (BMP-9) and erythropoietin (EPO) genes co-transfection on osteogenic differentiation of adipose-derived stem cells (ADSCs) in vitro. MethodsThe inguinal adipose tissue was harvested from 4-month-old New Zealand rabbits, ADSCs were isolated with enzyme digestion and adherence method, and multipotent differentiation capacity was identified. The 3rd generation ADSCs were divided into 5 groups: normal cells (group A), empty plasmid control group (group B), BMP-9 or EPO recombinant adenovirus transfected cells (groups C and D), BMP-9 and EPO recombinant adenovirus co-transfected cells (group E). The inverted phase contrast microscope was used to observe the cell growth at 7 days; the expression of cell fluorescence was observed under a fluorescence microscope at 14 days, and viral transfection efficiency was calculated at 48 hours; Western blot was used to detect the expressions of BMP-9 and EPO proteins at 14 days. The expression of alkaline phosphatase (ALP) activity was detected at 3, 7, and 14 days after osteogenic induction, and alizarin red staining was used to detect calcium nodules formation and real-time fluorescence quantitative PCR to detect the expressions of osteopontin (OPN) and osteocalcin (OCN) at 3 weeks. ResultsAt 7 days after transfected, some cells showed oval, round, and irregular shape under the inverted phase contrast microscope in groups A and B; a few fusiform cells were observed in groups C and D; oval cells increased obviously, and there were only few round cells in group E. The fluorescence microscope observation showed that BMP-9 and EPO, BMP-9/EPO recombinant adenovirus could stably transfected ADSCs, with transfection efficiency of 80%-93%. The expressions of BMP-9 and EPO proteins significantly higher in group E than the other groups by Western blot (P < 0.05). The ALP activity significantly increased in group E when compared with that in the other groups at 3, 7, and 14 days after osteogenic induction (P < 0.05); the number of calcium nodules in group E was significantly more than that in the other groups (P < 0.05). Real-time fluorescence quantitative PCR showed that OPN and OCN genes expressions were significantly higher in group E than other groups (P < 0.05), and in groups C and D than groups A and B (P < 0.05). ConclusionRecombinant adenovirus-mediated BMP-9 and EPO genes can transfect ADSCs, which can stably express in ADSCs, BMP-9/EPO genes co-transfection can more promote the expressions of osteoblast-related genes and protein than non-transfected and single gene transfection.

          Release date: Export PDF Favorites Scan
        • MECHANISM OF IMPROVED REVASCULARIZATION OF FREE FAT GRAFTING WITH ADIPOSE-DERIVED STEM CELLS

          Objective?To review the mechanism of improved revascularization of free fat grafting with adipose-derived stem cells (ADSCs).?Methods?The literature related to the basic researches of ADSCs in free fat grafting and angiogenesis was reviewed.?Results?Angiogenesis is a sequence process in time and space which is regulated by various factors. ADSCs possess the capability of secreting many angiogenic growth factors and differentiating into various lineages.Conclusion?ADSCs affect every process of angiogenesis with clear improved angiogenic effects, however, the mechanisms of angiogenic effects need the further researches.

          Release date:2016-08-31 05:45 Export PDF Favorites Scan
        • Repair effects of rat adipose-derived stem cells on DNA damage induced by ultraviolet in chondrocytes

          Objective To explore the DNA repair effect of rat adipose-derived stem cells (ADSCs) on chond-rocytes exposed to ultraviolet (UV) radiation. Methods ADSCs were isolated and cultured from the inguinal adipose tissue of Sprague Dawley rat by digestion with collagenase type I. ADSCs cell phenotype was assayed with flow cytometry. Multiple differentiation capability of ADSCs at passage 3 was identified with osteogenic and adipogenic induction. The chondrocytes were obtained from rat articular cartilage by digestion with collagenase type II and were identified with toluidine blue staining. The chondrocytes at passage 3 were irradiated with 40 J/m2 UV and cultured with normal medium (irradiated group), and medium containing the ADSCs supernatant (ADSCs supernatant group) or ADSCs was used for co-culture (ADSCs group) for 24 hours; no irradiation chondrocytes served as control group. The cell proliferation was estimated by MTS method. The expression of phosphorylated histone family 2A variant (γH2AX) was detected by immunofluorescence and Western blot. Results ADSCs presented CD29(+), CD44(+), CD106(-), and CD34(-); and results of the alizarin red staining and oil red O staining were positive after osteogenic and adipogenic induction. Cell proliferation assay demonstrated the absorbance (A) values were 2.20±0.10 (control group), 1.34±0.04 (irradiated group), and 1.57±0.06 (ADSCs supernatant group), showing significant difference between groups (P<0.05). Immunofluorescence and Western blot showed that the γH2AX protein expression was significantly increased in irradiated group, ADSCs supernatant group, and ADSCs group when compared with control group (P<0.05), and the expression was significantly decreased in ADSCs supernatant group and ADSCs group when compared with irradiated group (P<0.05), but no significant difference was found between ADSCs supernatant group and ADSCs group (P>0.05). Conclusion ADSCs can increase the cell proliferation and down-regulate the γH2AX protein expression of irradiated cells, indicating ADSCs contribute to the repair of irradiated chondrocyte.

          Release date:2017-05-05 03:16 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF ADIPOSE-DERIVED STEM CELLS COMPOUND WITH THREE DIMENSIONAL PRINTING SCAFFOLD FOR ENGINEERED TISSUE

          ObjectiveTo review the research progress of adipose-derived stem cells (ADSCs) compound with three dimensional (3D) printing scaffold in tissue engineering of fat, bone, cartilage, blood vessel, hepatocyte, and so on. MethodsThe recently published literature about ADSCs compound with 3D printing scaffold in tissue engineering at home and abroad was reviewed, analyzed, and summarized. ResultsA large number of basic researches showed that ADSCs could differentiate into a variety of tissues on 3D printing scaffold and involve in tissue repair and regeneration. But there is still a long way between the basic theory and the clinical practice at the early stages of development. ConclusionIt can effectively improve and restore the structure and function of the damaged tissue and organ to use ADSCs and 3D printing scaffold.

          Release date: Export PDF Favorites Scan
        • ADVANCEMENT OF ADIPOSE-DERIVED STEM CELLS ASSISTED AUTOLOGOUS LIPOTRANSFER IN BREAST REPAIR AND RECONSTRUCTION

          Objective To review the latest progress in the major biological properties of adipose-derived stem cells (ADSCs) and ADSCs assisted autologous lipotransfer in breast repair and reconstruction. Methods Recent literature about ADSCs assisted autologous lipotransfer in breast repair and reconstruction was reviewed. Results ADSCs have multipotential differentiation capacity, and they could promote angiogenesis and regulate immune reactions. ADSCs assisted autologous lipotransfer can obtain satisfactory effectiveness in breast repair and reconstruction with few complications, but more studies are needed to confirm the long-term safety. Conclusion ADSCs assisted autologous lipotransfer has good effectiveness in breast repaired and reconstruction. But further clinical trials are needed to confirm the long-term safety.

          Release date:2016-08-31 04:05 Export PDF Favorites Scan
        6 pages Previous 1 2 3 ... 6 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品