ObjectiveTo observe the optical coherence tomography angiography (OCTA) image characteristics of polypoid choroidal vascular disease (PCV) after intravitreal injection of anti-vascular endothelial growth factor drugs, and to discuss its significance in the diagnosis and follow-up of PCV.MethodsA retrospective case study. From August 2018 to January 2020, 22 eyes of 22 patients with PCV diagnosed in the ophthalmological examination of Affiliated Hospital of Weifang Medical University were included in the study. Among them, there were 10 males with 10 eyes and 12 females with 12 eyes; the average age was 67.75±9.53 years. Best corrected visual acuity (BCVA), OCTA, and indocyanine green angiography (ICGA) were performed. All the affected eyes were injected vitreously with 10 mg/ml Conbercept 0.05 ml (including Conbercept 0.5 mg) once a month for 3 consecutive months.Tthe macular area of 3 mm×3 mm and 6 mm×6 mm with an OCTA instrument was scanned, and the foveal retinal thickness (CRT) was measured, the area of abnormal branch blood vessels (BVN). pigment epithelial detachment before and 12 months after treatment (PED) height, foveal choroid thickness (SFCT) were performed. The diagnosis rate of PCV by OCTA was observed, as well as the changes of various indicators of BCVA and OCTA. Before and after treatment, BCVA and CRT were compared by paired t test; BVN area, PED height, and SFCT were compared by variance analysis. The changes in imaging characteristics of OCTA before and after treatment were analyzed.ResultsAmong the 22 eyes, 8 eyes were BVN; 5 eyes were polypoid lesions (polyps); 5 eyes were BVN combined with polyps; 3 eyes were not found with BVN and polyps; 1 eye with small vascular network structure, this eye was ICGA Appears as strong nodular fluorescence (polyps). The detection rate of PCV by OCTA was 86.36% (19/22). Twelve months after treatment, BVN was significantly reduced or disappeared in 16 eyes (72.72%, 16/22); polyps disappeared in 17 eyes (77.27%, 17/22). Compared with before treatment, 12 months after treatment, BCVA increased (t=3.071), CRT decreased (t=2.440), the difference was statistically significant (P<0.05); the average BVN area, PED height, and SFCT decreased. The difference in average BVN area and PED height was statistically significant (F=2.805, 3.916; P<0.05), and the difference in SFCT was not statistically significant (F=0.047, P>0.05).ConclusionsThe detection rate of PCV by OCTA is 86.36%. After PCV anti-vascular endothelial growth factor drug treatment, BVN area decrease and polyps subside. OCTA is an effective means for PCV diagnosis and follow-up after anti-VEGF drug treatment.
According to the best corrected visual acuity and the morphological changes of the macular fovea, responses to the neovascular age-related macular degeneration (nAMD) who receive anti-vascular endothelial growth factor (VEGF) therapy show large variability, including poor and non-responders. Various factors will be reviewed to account for poor and non-response to anti-VEGF therapy, such as the related susceptibility genes, factors related with the development of choroidal neovascularization and morphologic parameters, pharmacokinetics and tachyphylaxis. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy to improve the therapeutic outcome of nAMD.
Objective To evaluate the effects of cryopreserved cultured allogenic dermal fibroblasts on angiogenesis and fibroplasia while artificial dermis grafting by spraying the cells on the graft bed.Methods Full thickness skin defect was made on the back of Wistar rat, fibroblasts mixed into fibrin glue (fibroblast group) and same amount fibrin glue (control group) were sprayed separately between the wound bed and artificial dermis in cell density of 1.0×105 cells/cm2 before the artificial dermis was grafted. On day 5 after grafting, the graft and surrounding tissue were examined histologically for angiogenesis and fibroplasia in the dermis and wound bed with hematoxylin eosin stain, VEGF antibody stain, Masson’s trichrome stain and India ink stain. Evans blue perfusion methodwas also used for detecting the angiogenesis quantitatively.Results In the fibroblast group, the angiogenesis of graft bed was significantly accelerated onday 5 after grafting; the numbers of the newly formed capillaries were 9.64±2.36/HP in the fibroblast group and 3.88±1.62/HP in the control group (P<0.05). And on day 10 after grafting the angiogenesis was accelerated not only in graft bed but also in the artificial dermis when compared with control group, the newly formed capillaries network was clearly observed in the artificial dermis. Otherwise, the synthesis of collagen was increased in the dermis on day 10 after grafting in the fibroblast group when compared with control group. The immunoreactivity of VEGF antibody in the fibroblast group also showed a ber expression than that in control group on day 5 after grafting, the numbers of positive cells were 46.04±8.90/HP in the fibroblast group and 30.08±7.76/HP in the control group(P<0.05).Conclusion Transplantation of cryopreserved dermal fibroblasts while artificial dermis grafting can accelerate the angiogenesis and fibroplasia in the artificial dermis and graft bed, thereby accelerate the formation of dermallike tissue in the artificial dermis.
Intravitreal anti-VEGF injection have been widely used in retinal vascular diseases and achieved good efficacy. Early pregnancy is an important period for fetal organ formation and vascular development. Studies have proved that VEGF plays an important role in maintaining the fetal and placental vascular system, and its loss or decline will affect embryonic development and lead to abortion. The use of intravitreal anti-VEGF during pregnancy is controversial, which may cause systemic side effects to the mother and fetus. This paper summarizes the literature of 23 cases on the use of anti-VEGF during pregnancy. Three cases reported loss of pregnancy with concomitant exposure to intravitreal bevacizumab, which suggested that we should be careful about the use of anti-VEGF during pregnancy and explain the possibility of ocular and systemic side effects to patients in detail. When deciding whether to use anti-VEGF, we should consider the relationship between exposure time and the critical period of vascular development and the systemic exposure of different drugs. Currently, there is a lack of large sample size studies on the use of anti-VEGF in pregnancy, and its safety needs to be further observed.
ObjectiveTo observe the clinical effect of intravitreal injection of tissue plasminogen activator (t-PA), ranibizumab and C3F8 in the treatment of early submacular hemorrhage (SMH) induce to polypoid choroidal vasculopathy (PCV).MethodsThe clinical data of 20 eyes of 20 patients with early SMH induce to PCV were enrolled in this study. The duration of bleeding in the eye was 7 to 28 days, and the mean duration of bleeding was 14.8±5.6 days. All eyes are measured using the Snellen chart best corrected visual acuity (BCVA), logarithm of the minimum angle of resolution (logMAR) was used to calculate visual acuity. Measure central retinal thickness (CRT) and central retinal pigment epithelial detachment (PED) thickness using frequency-domain optical coherence tomography. The average logMAR BCVA of eyes was 1.73±0.91; the mean CRT was 620.0±275.8 μm; the average central PED thickness was 720.3±261.9 μm. All eyes receive intravitreal injection of t-PA, ranibizumab and C3F8. The intravitreal injection of ranibizumab was administered once a month for 3 consecutive months, followed by an on-demand treatment plan. Mean follow-up time was 9.9±3.6 months. The changes in BCVA, CRT, central PED thickness and clearance degree of SMH at 6 months after treatment were observed.ResultsOn the 6 months after treatment, the average logMAR BCVA, CRT and central PED thickness of the eyes were respectively 0.42±0.37, 290.2±97.4 μm and 41.6±78.1 μm. Compared with baseline, the after treatment BCVA was significantly increased (F=38.14, P=0.000), but the CRT and central PED were significantly decreased (F=7.48, 75.94; P=0.000, 0.000). Among the 20 eyes, 16 eyes of SMH was completely cleared, accounting for 80%;4 eyes was partially cleared, accounting for 20%. No recurrence and systemic or local complications occurred during follow-up of all eyes.ConclusionIntravitreal injection of t-PA, ranibizumab, and C3F8 in the treatment of early SMH induce to PCV can effectively remove SMH, improve vision, reduce CRT and central thickness of PED.
ObjectiveTo observe the efficacy of intravitreal injection of ranibizumab (IVR) for retinal angiomatous proliferation (RAP).
MethodsEleven patients (14 eyes) with RAP were enrolled in this retrospective clinical study. The best-corrected visual acuity (BCVA), central retinal thickness (CRT), and maximum retinal thickness (MRT) were detected by examination of visual acuity and optical coherence tomography (OCT). The average BCVA was 0.17±0.21, CRT was (382.71±219.07) μm, MRT was (746.36±268.29) μm. All eyes received 0.5 mg (0.05 ml) ranibizumab injection. Follow-up visits were performed monthly after injection. The mean follow-up time was (15.38±13.64) month. Injections were repeated if the eyes with retinal edema. The mean number of repetitive IVR was (3.7±1.0) times/eye (from 1 to 10 times). Changes in BCVA, CRT, MRT and complications were observed at the last follow up.
ResultsAt the last follow-up, the mean BCVA was 0.28±0.26 (from 0.01 to 1.0). Of 14 eyes, visual acuity improved in 11 eyes, not changed in 2 eyes and decreased in 1 eye. The difference of BCVA was significant between before and after the treatment (t=3.167,P=0.007). The mean CRT was (166.14±52.79) μm, which was less than that of pre-treatment values (t=3.737,P=0.002). The mean MRT was (360.43±102.19) μm, which was less than that of pre-treatment values (t=6.106,P=0.000). No ocular or systemic adverse effects occurred.
ConclusionIVR is an efficient and safe treatment for RAP, with visual acuity improvement, decrease of CRT and MRT.
Objective To study the relationships between expressions of somatostatin receptor subtypes(SSTR1-SSTR5) and angiogenesis in colorectal cancer. Methods The expressions of SSTR1-SSTR5, VEGF, and CD34 in the paraffin sections of colorectal cancer tissues from 127 cases were detected by the standard streptavidin-peroxidase (SP) technique. CD34 was used as a marker to account microvessel density (MVD) in colorectal cancer tissues. The relationships between the expressions of SSTR1-SSTR5 and VEGF expression, or MVD were analyzed. Results The positive expression rate of SSTR1, SSTR2, SSTR3, SSTR4, and SSTR5 was 64.6% (82/127), 36.2% (46/127), 18.9% (24/127), 18.9% (24/127), and 38.6% (49/127) in colorectal cancer tissues, meanwhile, the positive expression rate of VEGF was 63.8% (81/127) and MVD was (34.67±16.62)/HP in colorectal cancer tissues. The positive expression rate of VEGF (47.8%, 22/46) and MVD 〔(29.00±15.32)/HP〕 in colorectal cancer tissues with SSTR2 positive expression were significantly lower than those in colorectal cancer tissues with SSTR2 negative expression 〔72.8%, 59/81; (37.90±16.56)/HP〕, Plt;0.05. There were no relationships between SSTR1, SSTR3, SSTR4, and SSTR5 expression and VEGF expression or MVD (Pgt;0.05). Conclusion The positive expression of SSTR2 is related with angiogenesis in colorectal cancer tissues.
ObjectiveTo evaluate the macular visual function of patients with myopic choroidal neovascularization (MCNV) before and after intravitreal injection of conbercept.MethodsA prospective, uncontrolled and non-randomized study. From April 2017 to April 2018, 21 eyes of 21 patients diagnosed as MCNV in Shanxi Eye Hospital and treated with intravitreal injection of conbercept were included in this study. There were 9 males (9 eyes, 42.86%) and 12 females (12 eyes, 57.14%), with the mean age of 35.1±13.2 years. The mean diopter was ?11.30±2.35 D and the mean axial length was 28.93±5.68 mm. All patients were treated with intravitreal injection of conbercept 0.05 ml (1+PRN). Regular follow-up was performed before and after treatment, and BCVA and MAIA micro-field examination were performed at each follow-up. BCVA, macular integrity index (MI), mean sensitivity (MS) and fixation status changes before and after treatment were comparatively analyzed. The fixation status was divided into three types: stable fixation, relatively unstable fixation, and unstable fixation. The paired-sample t-test was used to compare BCVA, MI and MS before and after treatment. The x2 test was used to compare the fixation status before and after treatment.ResultsDuring the observation period, the average number of injections was 3.5. The logMAR BCVA of the eyes before treatment and at 1, 3, and 6 months after treatment were 0.87±0.32, 0.68±0.23, 0.52±0.17, and 0.61±0.57, respectively; MI were 89.38±21.34, 88.87±17.91, 70.59±30.02, and 86.76±15.09, respectively; MS were 15.32±7.19, 21.35±8.89, 23.98±11.12, 22.32±9.04 dB, respectively. Compared with before treatment, BCVA (t=15.32, 18.65, 17.38; P<0.01) and MS (t=4.08, 3.50, 4.26; P<0.01) were significantly increased in the eyes 1, 3, and 6 months after treatment. There was no significant difference in the MI of the eyes before treatment and at 1, 3, and 6 months after treatment (t=0.60, 2.42, 2.58; P>0.05). Before treatment and at 1, 3, and 6 months after treatment, the proportion of stable fixation were 28.57%, 38.10%, 38.10%, 33.33%;the proportion of relatively unstable fixation were 47.62%, 47.62%, 52.38%, 57.14% and the proportion of unstable fixation were 23.81%, 14.28%, 9.52%, 9.52%, respectively. The proportion of stable fixation and relatively unstable fixation at 1, 3 and 6 months after treatment were higher than that before treatment, but the difference was not statistically significant (x2=1.82, 1.24, 1.69; P>0.05).ConclusionBCVA and MS are significantly increased in patients with MCNV after intravitreal injection of conbercept.
PURPOSE:To investigate the spatial and temporal relation of fibronectin(Fn),basic fibroblast growth factor(b-FGF)and astrocytes with the retinal vascular developmemt of human fatuses.
METHODS:The retinas of 86 human fetuses from 13th week to 40th week were studied by immunohistochemical methods and light microscopy.
RESULTS:Fn immunoreativity was localized in spindle cells ,vascular endothelial cells and extracellular matrix ahead of the spindle cells,vascular endothelial cells,ganglion cells and cone cells were b-FGF immunopositive. The b-FGF immunoreactivity in ganglion cells and cone cells appeared earlier than the vascularization nearby.Astrocytes migrated to ora serrata in close association with the spindle cells.and sent numerous processes to ensheath the blood vessels formed in two processes of retinal vascuiarlzation.
CONCLUSION:These results suggest that Fn ,b-FGF and astrocytes were involved in modulating both of two processes of retinal vascularizalion.
(Chin J Ocul Fundus Dis,1996,12:180-182)
Intraocular tumors is a serious blinding eye disease, which has a serious impact on patients' vision and even life. At present, the main treatments include surgical treatment, radiation therapy, chemotherapy, laser therapy and combination therapy. In recent years, with the wide application of anti-vascular endothelial growth factor (VEGF) in the treatment of ocular diseases, many studies have confirmed that anti-VEGF drugs play an important auxiliary role in the treatment of intraocular tumors and its complications. In terms of the therapeutic effect, intravitreal anti-VEGF combined with other methods have a good prognosis in the treatment of choroidal metastatic carcinoma and retinoblastoma, while the therapeutic effect of uveal melanoma is still controversial. In the treatment of intraocular tumor complications, intravitreal anti-VEGF also has a good effect on the secondary lesions of choroidal osteoma and radiation retinopathy. As for drug safety, intravitreal anti-VEGF can significantly reduce the toxic and side effects of systemic chemotherapeutic therapy. However, the dosage and medication regimen of anti-VEGF drugs in the treatment of intraocular tumors and their complications have not been unified in current studies, and further basic and clinical trials are still needed to explore in the future.