The accurate segmentation of breast ultrasound images is an important precondition for the lesion determination. The existing segmentation approaches embrace massive parameters, sluggish inference speed, and huge memory consumption. To tackle this problem, we propose T2KD Attention U-Net (dual-Teacher Knowledge Distillation Attention U-Net), a lightweight semantic segmentation method combined double-path joint distillation in breast ultrasound images. Primarily, we designed two teacher models to learn the fine-grained features from each class of images according to different feature representation and semantic information of benign and malignant breast lesions. Then we leveraged the joint distillation to train a lightweight student model. Finally, we constructed a novel weight balance loss to focus on the semantic feature of small objection, solving the unbalance problem of tumor and background. Specifically, the extensive experiments conducted on Dataset BUSI and Dataset B demonstrated that the T2KD Attention U-Net outperformed various knowledge distillation counterparts. Concretely, the accuracy, recall, precision, Dice, and mIoU of proposed method were 95.26%, 86.23%, 85.09%, 83.59%and 77.78% on Dataset BUSI, respectively. And these performance indexes were 97.95%, 92.80%, 88.33%, 88.40% and 82.42% on Dataset B, respectively. Compared with other models, the performance of this model was significantly improved. Meanwhile, compared with the teacher model, the number, size, and complexity of student model were significantly reduced (2.2×106 vs. 106.1×106, 8.4 MB vs. 414 MB, 16.59 GFLOPs vs. 205.98 GFLOPs, respectively). Indeedy, the proposed model guarantees the performances while greatly decreasing the amount of computation, which provides a new method for the deployment of clinical medical scenarios.
Objective To assess atomoxetine and methylphenidate therapy for attention- deficit/ hyperactivity disorder (ADHD) .Methods We electronically searched the Cochrane Library (Issue 2, 2008), PubMed (1970 to 2008), MEDLINE (1971 to 2008), EMbase (1971 to 2008), Medscape (1990 to 2008), CBM (1978 to 2008), and NRR (1950 to 2008). We also hand-searched some published and unpublished references. Two independent reviewers extracted data. Quality was assessed by the Cochrane Reviewer’s Handbook 4.0. Meta-analysis was conducted by The Cochrane Collaboration’s RevMan 4.2.8 software. Results We finally identified 3 randomized controlled trials that were relevant to the study. Treatment response (reducing ADHD-RS Inattention subscale score) was significantly greater for patients in the methylphenidate group than in the atomoxetine group with WMD= – 1.79 and 95%CI – 2.22 to 1.35 (Plt;0.000 01). There was no statistical difference in other outcome measures between two groups (Pgt;0.05). Conclusions The effectiveness and tolerance of methylphenidate and atomoxetine are similar in treatment of ADHD. Further large randomized, double blind, placebocontrolled trials with end-point outcome measures in long-term safety and efficacy are needed.
ObjectiveTo systematically review the effect of media multitasking on working memory and attention among adolescents. MethodsCNKI, CBM, WanFang Data, VIP, PubMed, Web of Science, and EMbase databases were electronically searched to collect cross-sectional studies on the effect of media multitasking on working memory and attention among adolescents from inception to January 1st, 2021. Two reviewers independently screened literature, extracted data, and assessed the risk of bias of included studies; then, meta-analysis was performed using Stata 15.1 software. ResultsA total of 16 cross-sectional studies were included. The results of meta-analysis showed that there were negative correlations between media multitasking and working memory (Cohen's d=0.40, 95%CI 0.14 to 0.66, P=0.003), as well as in attention (Cohen's d=1.02, 95%CI 0.58 to 1.47, P<0.001). ConclusionCurrent evidence shows that media multitasking has negative impact on working memory and attention. Due to limited quality and quantity of the included studies, more high-quality studies are required to verify the above conclusion.
Accurate segmentation of pediatric echocardiograms is a challenging task, because significant heart-size changes with age and faster heart rate lead to more blurred boundaries on cardiac ultrasound images compared with adults. To address these problems, a dual decoder network model combining channel attention and scale attention is proposed in this paper. Firstly, an attention-guided decoder with deep supervision strategy is used to obtain attention maps for the ventricular regions. Then, the generated ventricular attention is fed back to multiple layers of the network through skip connections to adjust the feature weights generated by the encoder and highlight the left and right ventricular areas. Finally, a scale attention module and a channel attention module are utilized to enhance the edge features of the left and right ventricles. The experimental results demonstrate that the proposed method in this paper achieves an average Dice coefficient of 90.63% in acquired bilateral ventricular segmentation dataset, which is better than some conventional and state-of-the-art methods in the field of medical image segmentation. More importantly, the method has a more accurate effect in segmenting the edge of the ventricle. The results of this paper can provide a new solution for pediatric echocardiographic bilateral ventricular segmentation and subsequent auxiliary diagnosis of congenital heart disease.
The processing mechanism of the human brain for speech information is a significant source of inspiration for the study of speech enhancement technology. Attention and lateral inhibition are key mechanisms in auditory information processing that can selectively enhance specific information. Building on this, the study introduces a dual-branch U-Net that integrates lateral inhibition and feedback-driven attention mechanisms. Noisy speech signals input into the first branch of the U-Net led to the selective feedback of time-frequency units with high confidence. The generated activation layer gradients, in conjunction with the lateral inhibition mechanism, were utilized to calculate attention maps. These maps were then concatenated to the second branch of the U-Net, directing the network’s focus and achieving selective enhancement of auditory speech signals. The evaluation of the speech enhancement effect was conducted by utilising five metrics, including perceptual evaluation of speech quality. This method was compared horizontally with five other methods: Wiener, SEGAN, PHASEN, Demucs and GRN. The experimental results demonstrated that the proposed method improved speech signal enhancement capabilities in various noise scenarios by 18% to 21% compared to the baseline network across multiple performance metrics. This improvement was particularly notable in low signal-to-noise ratio conditions, where the proposed method exhibited a significant performance advantage over other methods. The speech enhancement technique based on lateral inhibition and feedback-driven attention mechanisms holds significant potential in auditory speech enhancement, making it suitable for clinical practices related to artificial cochleae and hearing aids.
ObjectiveTo systematically review the methodological quality of guidelines concerning attention-deficit/hyperactivity disorder (ADHD) in children and adolescents, and to compare differences and similarities of the drugs recommended, in order to provide guidance for clinical practice.
MethodsGuidelines concerning ADHD were electronically retrieved in PubMed, EMbase, VIP, WanFang Data, CNKI, NGC (National Guideline Clearinghouse), GIN (Guidelines International Network), NICE (National Institute for Health and Clinical Excellence) from inception to December 2013. The methodological quality of included guidelines were evaluated according to the AGREE Ⅱ instrument, and the differences between recommendations were compared.
ResultsA total of 9 guidelines concerning ADHD in children and adolescents were included, with development time ranging from 2004 to 2012. Among 9 guidelines, 4 were made by the USA, 3 in Europe and 2 by UK. The levels of recommendations were Level A for 2 guidelines, and Level B for 7 guidelines. The scores of guidelines according to the domains of AGREE Ⅱ decreased from "clarity of presentations", "scope and purpose", "participants", "applicability", "rigour of development" and "editorial independence". Three evidence-based guidelines scored the top three in the domain of "rigour of development". There were slightly differences in the recommendations of different guidelines.
ConclusionThe overall methodological quality of ADHD guidelines is suboptimal in different countries or regions. The 6 domains involving 23 items in AGREE Ⅱ vary with scores, while the scores of evidence-base guidelines are higher than those of non-evidence-based guidelines. The guidelines on ADHD in children and adolescents should be improved in "rigour of development" and "applicability" in future. Conflicts of interest should be addressed. And the guidelines are recommended to be developed on the basis of methods of evidence-based medicine, and best evidence is recommended.
To accurately capture and effectively integrate the spatiotemporal features of electroencephalogram (EEG) signals for the purpose of improving the accuracy of EEG-based emotion recognition, this paper proposes a new method combining independent component analysis-recurrence plot with an improved EfficientNet version 2 (EfficientNetV2). First, independent component analysis is used to extract independent components containing spatial information from key channels of the EEG signals. These components are then converted into two-dimensional images using recurrence plot to better extract emotional features from the temporal information. Finally, the two-dimensional images are input into an improved EfficientNetV2, which incorporates a global attention mechanism and a triplet attention mechanism, and the emotion classification is output by the fully connected layer. To validate the effectiveness of the proposed method, this study conducts comparative experiments, channel selection experiments and ablation experiments based on the Shanghai Jiao Tong University Emotion Electroencephalogram Dataset (SEED). The results demonstrate that the average recognition accuracy of our method is 96.77%, which is significantly superior to existing methods, offering a novel perspective for research on EEG-based emotion recognition.
Accurate segmentation of ground glass nodule (GGN) is important in clinical. But it is a tough work to segment the GGN, as the GGN in the computed tomography images show blur boundary, irregular shape, and uneven intensity. This paper aims to segment GGN by proposing a fully convolutional residual network, i.e., residual network based on atrous spatial pyramid pooling structure and attention mechanism (ResAANet). The network uses atrous spatial pyramid pooling (ASPP) structure to expand the feature map receptive field and extract more sufficient features, and utilizes attention mechanism, residual connection, long skip connection to fully retain sensitive features, which is extracted by the convolutional layer. First, we employ 565 GGN provided by Shanghai Chest Hospital to train and validate ResAANet, so as to obtain a stable model. Then, two groups of data selected from clinical examinations (84 GGN) and lung image database consortium (LIDC) dataset (145 GGN) were employed to validate and evaluate the performance of the proposed method. Finally, we apply the best threshold method to remove false positive regions and obtain optimized results. The average dice similarity coefficient (DSC) of the proposed algorithm on the clinical dataset and LIDC dataset reached 83.46%, 83.26% respectively, the average Jaccard index (IoU) reached 72.39%, 71.56% respectively, and the speed of segmentation reached 0.1 seconds per image. Comparing with other reported methods, our new method could segment GGN accurately, quickly and robustly. It could provide doctors with important information such as nodule size or density, which assist doctors in subsequent diagnosis and treatment.
Manual segmentation of coronary arteries in computed tomography angiography (CTA) images is inefficient, and existing deep learning segmentation models often exhibit low accuracy on coronary artery images. Inspired by the Transformer architecture, this paper proposes a novel segmentation model, the double parallel encoder u-net with transformers (DUNETR). This network employed a dual-encoder design integrating Transformers and convolutional neural networks (CNNs). The Transformer encoder transformed three-dimensional (3D) coronary artery data into a one-dimensional (1D) sequential problem, effectively capturing global multi-scale feature information. Meanwhile, the CNN encoder extracted local features of the 3D coronary arteries. The complementary features extracted by the two encoders were fused through the noise reduction feature fusion (NRFF) module and passed to the decoder. Experimental results on a public dataset demonstrated that the proposed DUNETR model achieved a Dice similarity coefficient of 81.19% and a recall rate of 80.18%, representing improvements of 0.49% and 0.46%, respectively, over the next best model in comparative experiments. These results surpassed those of other conventional deep learning methods. The integration of Transformers and CNNs as dual encoders enables the extraction of rich feature information, significantly enhancing the effectiveness of 3D coronary artery segmentation. Additionally, this model provides a novel approach for segmenting other vascular structures.
The synergistic effect of drug combinations can solve the problem of acquired resistance to single drug therapy and has great potential for the treatment of complex diseases such as cancer. In this study, to explore the impact of interactions between different drug molecules on the effect of anticancer drugs, we proposed a Transformer-based deep learning prediction model—SMILESynergy. First, the drug text data—simplified molecular input line entry system (SMILES) were used to represent the drug molecules, and drug molecule isomers were generated through SMILES Enumeration for data augmentation. Then, the attention mechanism in the Transformer was used to encode and decode the drug molecules after data augmentation, and finally, a multi-layer perceptron (MLP) was connected to obtain the synergy value of the drugs. Experimental results showed that our model had a mean squared error of 51.34 in regression analysis, an accuracy of 0.97 in classification analysis, and better predictive performance than the DeepSynergy and MulinputSynergy models. SMILESynergy offers improved predictive performance to assist researchers in rapidly screening optimal drug combinations to improve cancer treatment outcomes.