OBJECTIVE: To study chondrogenesis of calcium alginate-chondrocytes predetermined shapes. METHODS: Chondrocytes isolated from ears of rabbit by type II collagenase digestion, and then were mixed with 1.5% solidium alginate solution. The suspension was gelled to create three spatial shapes as triangle, circle and quadrilateral by immersed into 2.5% CaCl2 for 90 minutes, and then was implanted into the subcutaneous pocket on the dorsum of the rabbit. Samples were harvested at 6 and 12 weeks after implantation. RESULTS: Gross examination of excised specimens at 6 and 12 weeks after implantation revealed the presence of new cartilage of approximately the same dimensions as the original construct. Histologic evaluation using hematoxylin and eosin stains confirmed the presence of cartilage nodules at 6 weeks after implantation. After 12 weeks, mature cartilage was observed and histologic analysis confirmed the presence of well formed cartilaginous matrix. CONCLUSION: Predetermined shapes neocartilage can be regenerated using calcium alginate as a carrier of chondrocytes in the bodies of immune animals.
Objective To investigate the effect of allogeneic chondrocytes-calcium alginate gel composite under the intervention of low intensive pulsed ultrasound (LIPUS) for repairing rabbit articular cartilage defects. Methods Bilateral knee articular cartilage were harvested from 8 2-week-old New Zealand white rabbits to separate the chondrocytes by mechanical-collagen type II enzyme digestion. The 3rd passage chondrocytes were diluted by 1.2% sodium alginate to 5 × 106 cells/mL, then mixed with CaCl2 solution to prepare chondrocytes-calcium alginate gel composite, which was treated with LIPUS for 3 days (F0: 1 MHz; PRF: 1 kHz; Amp: 60 mW/cm2; Cycle: 50; Time: 20 minutes). An articular cartilage defect of 3 mm in diameter and 3 mm in thickness was established in both knees of 18 New Zealand white rabbits (aged 28-35 weeks; weighing, 2.1-2.8 kg), and divided into 3 groups randomly, 6 rabbits in each group: LIPUS group, common group, and model group. Defect was repaired with LIPUS-intervention gel composite, non LIPUS-intervention gel composite in LIPUS group and common group, respectively; defect was not treated in the model group. The general condition of rabbits was observed after operation. The repair effect was evaluated by gross and histological observations, immunohistochemical staining, and Wakitani score at 8 and 12 weeks after operation. Results Defect was filled with hyaline chondroid tissue and white chondroid tissue in LIPUS and common groups, respectively. LIPUS group was better than common group in the surface smooth degree and the degree of integration with surrounding tissue. Defect was repaired slowly, and the new tissue had poor elasticity in model group. Histological observation and Wakitani score showed that LIPUS group had better repair than common group at 8 and 12 weeks after operation; the repair effect of the 2 groups was significantly better than that of model group (P lt; 0.05); and significant differences in repair effect were found between at 8 and 12 weeks in LIPUS and common groups (P lt; 0.05). The collagen type II positive expression area and absorbance (A) value of LIPUS and common groups were significantly higher than those of model group (P lt; 0.05) at 8 and 12 weeks after operation, and the expression of LIPUS group was superior to that of common group at 12 weeks (P lt; 0.05); and significant differences were found between at 8 and 12 weeks in LIPUS group (P lt; 0.05), but no significant difference between 2 time points in common and model groups (P gt; 0.05). Conclusion Allogeneic chondrocytes-calcium alginate gel composite can effectively repair articular cartilage defect. The effect of LIPUS optimized allogeneic chondrocytes-calcium alginate gel composite is better.
Objective To study the mechanism of compound of calcium phosphate(TCP) and platelet-rich plasma(PRP) in the treatment of femoral head necrosis.Methods The left femoral heads of 48 New Zealand white rabbits were frozen by liquid nitrogen as to make themodel of femoral head necrosis.Twenty-four rabbits were randomly chosen as theexperimental group and their femoral heads were filled with TCP/PRP. The other 24 rabbits were used as the control group and their femoral heads were filled only with TCP. They were sacrificed at 2, 4,8,12 weeks after operation. The specimens were examined with X-ray and histological study.Results At 2 weeks after operation,there was no significant difference in femoral headdensity between the two groups. Four weeks after operation, femoral head density decreased in both groups, while it decreased more in the control group. At 8,12 weeks after operation, the density of the femoral heads in both groups increased, and it was higher in the experimental group. Histology examination showed thatthere was no difference between the two groups 2 weeks after operation. The head became flat at 4 weeks. Control group had more defects. At 4,8,12 weeks, more repairs were observed in the experimental group than that in the control group. The amount and maturity of osteogenesis in experimental group were much more greaterthan those in control group.Bone histomorphometry showed that the volum of thetrabecular was larger in the experimental group (36.65%±7.22%,38.29%±4.28%,39.24%±3.42%) than that of control group(P<0.05). Conclusion TCP/PRP does not only provide osteoblasts scaffold, butalso promotes bone formation and the head repair. TCP/PRP is a good biomaterialfor the treatment of femur head necrosis.
Objective To probe the change of the structure and function of the small bowel by injection of different drugs (verapamil, energy compounds or normal saline) via the superior mesenteric artery (SMA) injections.Methods The model of the small intestine ischemia/reperfusion (I/R) injury was made in grey rabbits. Free calcium concentration in mitochondria of the small intestine was determined, and the ultrastructural change was also observed by electron microscopy at the very time of occlusion, 60 minutes after occlusion and 30 minutes after reperfusion. Results The free calcium concentration in mitochondria was more declined in verapamil group (2.976±0.410 nmol/mg.prot) than in N.S. group (4.234±0.542 nmol/mg.prot), P<0.01, at 60 minutes after occlusion. At 30 minutes after reperfusion, free calcium concentration in mitochondria was more decreased in energy compunds group (2.401±0.323 nmol/mg.prot) and verapamil group (3.847±0.610 nmol/mg.prot) than in the N.S. group (5.981±1.031 nmol/mg.prot). Conclusion Verapamil and energy compouds have protective effects on the functions and ultrastructures of the I/R of small intestine.
The aim of this experiment was to study the osteogenesis in vivo of allogenic osteoblast combined culture with calcium phosphate composites. The osteoblasts were obtained by enzymatic digestion of periosteum from fibula subcultured to 13 generations, the cells were combined culture with hydroxyapatite and biphasic calcium phosphate. Subseguently, the composite was implanted into rabbits subcutaneously or intramuscularly. The blank material was implanted in the contralateral side as control. Four weeks later, all animals were sacrificed. All the implants were examined by gross observation, histological examination and EDXA. The results showed: 1. obvious ingrowth of connective tissue with very little inflammatory reaction; 2. new bone formation in the composites with deposit of Ca and P on the surface of osteoblast, but none in the blank materials; 3. no significant difference of new bone formation between the different sites of implantation or different materials, but those implanted intramuscularly had lamellae form of new bone while those implanted subcutaneously had only mineralization of extracellular matrix. The conclusion were: 1. the composites are biocompatible with prior osteogenesis property; 2. periosteal-derived allogenic osteoblasts obatined by enzymatic digestion could survive following implantation with bioactivity; 3. rich blood supply might be advantageous to new bone formation and its maturation.
Free calcium ions, as a kind of message-transport substance, is important in cellular activity such as cell movement, cell differentiation and cell proliferation. In order to investigate the relationship between free calcium ions and scar contracture, the fibroblasts which originated from hypertrophic scar, keloid and normal skin were used as the experimental target. The fibroblasts from 4th-6th generations of different sources were used; Then the intracellular free calcium ions concentrations were measured respectively by the fluorescent Ca2+ indicator Fura-2/AM and Image analysis system. The results showed that the level of Ca2+ in fibroblasts of hypertrophic scar was higher than that in keloid and normal skin (P lt; 0.01). There was no significant difference between the level of Ca2+ in keloid and in normal skin. The conclusion was that the concentration of intracellular free calcium ions played an important role in the scar contract, but the exact mechanism was still unclear and required further study.
PURPOSE:To approach the establishment of t be optimal method for determining the intracellular free Ca2+ concentration[Ca2+]i of dissociated newborn rabbit retina cells by using fluorescent indicator-Fura-2/AM. METHODS:Trypsin was employed to prepare the retlna cell suspensions which were then loaded with Fura-2/AM followed by fluorescence determination. RESULTS:The cellular viability rate of retina cell suspensiotls prepared by 0.05% trypsin 10 minutes at 37deg;C was over 90%. Loading the retina cell suspensions with Fura-2/AM 40 minutes at 37deg;C and then measurlng the fluorescent intensity of the suspensions within 30 minutes were proved to be the optimum.
CONCLUSIONS:The resting [Ca2+]i of retina cell suspension was (223plusmn;27)nmol/L whlch was within the expected range of [Ca2+]i level. 25mmoI/L and S0mmol/L K+ increased the [Ca2+Ji 59% and 148% respectively. These results indicate that the preparation of retina cell suspensions and the method of [Ca2+Ji determination are reliable and feasible.
(Chin J Ocul Fundus Dis,1996,12: 108-110 )
ObjectiveTo investigate the mechanical properties of the novel compound calcium phosphate cement (CPC) biological material as well as the biological activity and osteogenesis effects of induced pluripotent stem cells (iPS) seeding on scaffold and compare their bone regeneration efficacy in cranial defects in rats.MethodsAc- cording to the different scaffold materials, the experiment was divided into 4 groups: pure CPC scaffold group (group A), CPC∶10%wt chitosan as 2∶1 ratio mixed scaffold group (group B), CPC∶10%wt chitosan∶whisker as 2∶1∶1 ratio mixed scaffold group (group C), and CPC∶10%wt chitosan∶whisker as 2∶1∶2 ratio mixed scaffold group (group D). Mechanical properties (bending strength, work-of-fracture, hardness, and modulus of elasticity) of each scaffold were detected. The scaffolds were cultured with fifth generation iPS-mesenchymal stem cells (MSCs), and the absorbance (A) values of each group were detected at 1, 3, 7, and 14 days by cell counting kit 8 (CCK-8) method; the alkaline phosphatase (ALP) activity, Live/Dead fluorescence staining and quantitative detection, ALP, Runx2, collagen typeⅠ, osteocalcin (OC), and bone morphogenetic protein 2 (BMP-2) gene expressions by RT-PCR were detected at 1, 7, and 14 days; and the alizarin red staining were detected at 1, 7, 14, and 21 days. Twenty-four 3-month-old male Sprague Dawley rats were used to establish the 8 mm-long skull bone defect model, and were randomly divided into 4 groups (n=6); 4 kinds of scaffold materials were implanted respectively. After 8 weeks, HE staining was used to observe the repair of bone defects and to detect the percentage of new bone volume and the density of neovascularization.ResultsThe bending strength, work-of-fracture, hardness, and modulus of elasticity in groups B, C, and D were significantly higher than those in group A, and in groups C, D than in group B, and in group D than in group C (P<0.05). CCK-8 assay showed that cell activity gradually increased with the increase of culture time, theA values in groups B, C, and D at 3, 7, 14 days were signifiantly higher than those in group A, and in groups C, D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Live/Dead fluorescence staining showed that the proportion of living cells in groups B, C, and D at 7 and 14 days was significantly higher than that in group A (P<0.05), and in groups C, D at 7 days than in group B (P<0.05); but no significant difference was found between groups C and D (P>0.05). RT-PCR showed that the relative expressions of genes in groups B, C, and D at 7 and 14 days were significantly higher than those in group A, and in groups C, D than in group B (P<0.05); but no significant difference was found between groups C and D (P>0.05). Alizarin red staining showed that the red calcium deposition on the surface of scaffolds gradually deepened and thickened with the prolongation of culture time; theA values in groups B, C, and D at 14 and 21 days were significantly higher than those in group A (P<0.05), and in groups C and D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05).In vivo repair experiments in animals showed that the new bone in each group was mainly filled with the space of scaffold material. Osteoblasts and neovascularization were surrounded by new bone tissue in the matrix, and osteoblasts were arranged on the new bone boundary. The new bone in groups B, C, and D increased significantly when compared with group A, and the new bone in groups C and D was significantly higher than that in group B. The percentage of new bone volume and the density of neovascularization in groups B, C, and D were significantly higher than those in group A, and in groups C and D than in group B (P<0.05); but no significant difference was found between groups C and D (P>0.05).ConclusionThe mechanical properties of the new reinforced composite scaffold made from composite chitosan, whisker, and CPC are obviously better than that of pure CPC scaffold material, which can meet the mechanical properties of cortical bone and cancellous bone. iPS-MSCs is attaching and proliferating on the new reinforced composite scaffold material, and the repair effect of bone tissue is good. It can meet the biological and osteogenic activity requirements of the implant materials in the bone defect repair.
Objective To study the effect and mechanism of the apoptosis of hypertrophic scar fibroblasts (HSF) induced by artesunate(Art). Methods HSFs were isolated and cultured from human earlobe scars by the tissue adherence method. The 3th to 5th generation cells were harvested and divided into two groups. HSF was cultured with normal medium in control group and with medium containing60, 120 and 240 mg/L (5 ml)Art in experimental group. Apoptosis and cell cycle were identified by light microscopy, electronmicroscopy and flow cytometry. Then, HSF was cultured with normal medium in control group and with medium containing 30, 60 and 120 mg/L Art in experimental group. The changes of intracellular calcium concentration were observed. Results The primary HSF was fusiform in shape and adherent. The vimentin positive expression was analyzed by immunocytochemistry. Art could induce apoptosis of HSF in the range of 60-240 mg/L under inverted microscope. The effect was dose and timedependent. Clumping of nuclear chromatin showed margination in the experimentalgroup. And the disaggregation of the nucleolus were observed under electronmicroscopy. There were significant differences in the proportion of HSF apoptosis and HSF at G0-G1,S, G2-M stages between the two groups(P<0.05). Apoptotic peak was shown in experimental group by flow cytometry. The peak became more evident asArt concentration increased. The intracellular calcium concentration elevated markedly in HSF with 30-120 mg/L Art treatment for 24 hours, showing significant differences between the two groups (P<0.05). Conclusion The Art facilitates HSF cells apoptosis in vitro by the change of cell cycle. It is suggested that intracellular calcium variation may be one of the mechanisms of HSF apoptosis induced by Art.
Objective To provide best available evidence for clinical practice and further research planning on IBS treatment, we reviewed systematically all the randomised controlled trials on calcium channel blockers for irritable bowel syndrome. The primary objective was to determine whether there was enough evidence that calcium channel blocker was effective and safe in the treatment of patients with IBS. Method Searches were performed in Trials Register of the Cochrane Complementary Medicine Field, data from the pharmaceutical company were also retrieved. In addition we searched the electronic bibliographic databases: Cochrane Controlled Trials Register, Medline, Embase, Chinese Biological Medical Database (CBM-disc). We handsearched some important Chinese journals. Two reviewers included studies, assessed the quality of studies and extracted data independently. Disagreement was resolved by discussion or the third party when needed. The following primary outcomes were assessed: ① Effective rate at the end of experiment, ② Improvmemnt in abodeminal pain and distention, ③ Adverse events. Results 49 potentially eligible trials were identified, of which 9 trials (831 patients) were included. 8 trials were waiting for assessment. The mean percentage of patients with global improvement was 48.9% in control group and 75% in the calcium channel blockers group. In favour of calcium group with a mean OR 4.54, 95%CI (2.38, 8.66). Conclusions Selective calcium channel blockers might be effective and safe in the treatment of patients with IBS.Because the methodological quality of all included studies was poor,further high-quality randomised controlled trials should be performed.