Objective To explore the relationship of the limited resource of the autologous bone marrow mesenchymal stem cells (MSCs) in articularcavity to the treatment results of full-thickness articular cartilage defect, and to investigate whether the extrogenous sodium hyaluronate(SH) promotes the migration of MSCs cultured in vitro tothe articular defect in vivo. Methods Sixty-six Japan rabbits were made the model of the full-thickness articular cartilage defect (5 mm width and 4 mm depth).The autologous MSCs were extracted from the rabbit femur, cultured in vitro, labeledby Brdu, and injected into the injured articular cavity with or without SH. Theexperiment was divided into 4 groups; group A (MSCs and SH, n=15); group B (MSCs, n=15); group C (SH, n=18); and group D (non-treatment, n=18). The morphologic observation was made by HE staining, Mallory staining and immunohistochemical staining after 5 weeks, 8 weeks and 12 weeks of operation. Results There were significant differences in the thickness of repairing tissue between group A and group B(Plt;0.01); but there were no significant differences between group A and group C, and between group B and group D(P>0.05). Thehistological observation showed that the main repairing tissue was fibrocartilage in group A and fiber tissue in group B. Conclusion MSCs cultured in vitro and injected into the articular cavity can not improve the treatment results of the articular cartilage defect. Extrogenous SH has effect on repairing cartilage defect. The extrogenous SH has no effect on the chemotaxis of the MSCs, and on the collection of MSCs into the joint defect.
Objective To evaluate the immunological reaction and the outcome of allogeneic chondrocyte transplantation in repairing articular cartilage defects in porcins. Methods Full articular cartilage from the knee of two Shanghai white porcins about one-month-old was removed and cut mechanically, digested by 0.25% trypsin and 0.2% type Ⅱ collagenase and cultured in 10% DMEM medium. Defects of 0.5 cm×0.5 cm involving the subchodral bone were created in both the left and right femur condyloid in 8 two-month-old Yunnai bama porcins. Allogeneic chondrocyte transplantation were implanted in defects at a density of (1.0-2.0)×106,0.2 ml. The lymphocytes from the receivers’ blood were collected before transplantation and after 3, 5, 7 and 12 weeks of transplantation, then mixed with allogeneic chondrocytes to determin the lymphocyte stimulation index(SI) in vitro. The histological observation in vivo was made after 5, 7 and 24 weeks of transplantation. Results Lymphocyte SI at 3, 5, 7 and 12 weeks(1.457±0.062,1.739±0.142,1.548±0.047,1.216±0.028) after transplantation was higher than that before transplantation(1.102±0.034,Plt;0.05). SI began to increase in the 3rd week and reached the peak value in the 5th week, then gradually declined at the 7th and 12th weeks, showing significant differences when compared with in the 5th week (Plt;0.05). Inflammation and lymphocytes infiltration could be seen in subchondral bone and the intergration area between repair tissue and normal cartilage in the 5th week, and then decreased and limited in subchondral bone in the 7th week. Defects were filled with cartilage tissue, which had good intergration with subchondral bone at 24 weeks after transplantation. Conclusion Immunological reactions can be found at early stage of allogeneic chondrocyte transplantation and then decreased with the time, the fullthickness articular cartilage defects could be repaired mainlywith hyaline cartilage by the allogeneic chondrocyte transplantation. This may provide a new method to repair articular cartilage defects clinically.
Objective To investigate the clinical application of periosteal autograft in repair of cartilage defect caused by osteoarthritis of knee. Methods From 1996 to 1999, 36 knees of cartilage defect of knee joint in 28 cases were treated. In the operation, the cracked degenerative cartilage was removed before free periosteum from tibia was transplanted to repair the defect, and the meniscuses in 8 knees of the 36 knees were reconstructed. After operation, early continuous passive movement was adopted for 4 weeks, and 8 knees with reconstruction ofthe meniscus were immobilized by plaster splint for 7 days after operation and before passive movement. All of the cases were followed up for 1 to 4 years before clinical evaluation in symptoms, signs and radiological findings. Results The general satisfactory rate was 86.1%, in which the function was excellent in 22 knees and good in 9 knees. Conclusion The periosteal autograft is a good choice for repairing cartilage defect due to osteoarthritis, with a satisfactory outcomein the short term.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
OBJECTIVE To present a simple and reliable method for the reconstruction of metacarpophalangeal joint by the cartilage transplantation of metatarsophalangeal joint. METHODS From 1990, nine cases (11 sides) with traumatic metacarpophalangeal joint defect were treated by the autogenous cartilage transplantation of metatarsophalangeal joint followed by modified treatment. Appropriate biological mechanics was provided by internal fixation and collateral ligament repair. RESULTS Followed up 6 months to 7 years, the range of joint motion was increased 35.1 degrees. The fusion of donor phalanges was fine, and the range of joint motion was decreased, even ankylosis after plastic operation, but no pain and no effect on walk. CONCLUSION The key to successful operation is better matching of cartilage, reliable internal fixation, ligament reconstruction, thin cartilage and little bone of the donor, appropriate biological mechanical surroundings.
Objective To repair the defects in articular cartilage with collagen complex gradient TCP in vivo andto study the regenerated cartilage histomorphologically. Methods The models of defects in articular cartilage were madeartificially in both condylus lateral is femoris of mature rabbits, male or female, with the weight of 2.0-2.5 kg. The right defects were implanted with the material of Col/TCP as the experimental group and the left defects were untreated as the control group. The rabbits were killed at 4, 6, 8, 12 and 24 weeks after operation, respectively, with 6 ones at each time, and the macroscopic, histological, ultrastructural examinations and semi-quantity cartilage scoring employing Wakitanifa repaired cartilage value system were performed. Results Four weeks after operation, the defects in the experimental group were partly filled with hyal ine cartilage. Twelve weeks after operation, the defects in the experimental group were completely filled with mature hyal ine cartilage. Twenty-four weeks after operation, regenerated cartilage had no ataplasia. However, fibrous tissues were seen in the control group all the time. At 4, 6, 8, 12 and 24 weeks ostoperatively, the Wakitanifa cartilage scores were 7.60 ± 0.98, 5.69 ± 0.58, 4.46 ± 0.85, 4.35 ± 0.12 and 4.41 ± 0.58, respectively, in the experimental group and 10.25 ± 1.05, 9.04 ± 0.96, 8.96 ± 0.88, 8.88 ± 0.68 and 8.66 ± 0.54, respectively, in the control group. At 4, 6, 8, 12 and 24 weeks postoperatively, the collagen II contents were 0.28% ± 0.01%, 0.59% ± 0.03%, 0.68% ± 0.02%, 0.89% ± 0.02% and 0.90% ± 0.01%, respectively, in the experimental group, while 0.08% ± 0.02%, 0.09% ± 0.04%, 0.11% ± 0.03%, 0.25% ± 0.03% and 0.29% ± 0.01%, respectively, in the control group. Differences between the control group and the experimental group were significant (P lt; 0.05). By then, typical chondrocyte was observed by transmission electron microscope in the experimental group and much fiber with less fibrocyte was observed in the control group. Conclusion Three-dimensional scaffold collagen complex gradient TCP may induce cartilage regeneration to repair the defects of articular cartilage in vivo.
【Abstract】 Objective To compare the effect of PLGA and collagen sponge combined with rhBMP-2 on repairing ofarticular cartilage defect in rabbits respectively. Methods PLGA and collagen sponge were made into cyl inders which were 4 mm in diameter and 3 mm in thickness, and compounded with rhBMP-2 (0.5 mg). Defect 4 mm in diameter were made in both of femoral condyles of 24 two-month-old New Zealand white rabbits. The defects in right 18 knees were treated with PLGA/rhBMP-2 composites (experimental group 1), and the left 18 knees were treated with collagen sponge/rhBMP-2 composites (experimental group 2), the other 12 knees were left untreated as control group. At 4, 12 and 24 weeks after operation, the animals were sacrificed and the newly formed tissues were observed macroscopically and microscopically, graded histologically and analyzed statistically. Results From the results of macroscopical and microscopical observation, in the experimental group 1, the defects were filled with smooth and translucent cartilage; while in the experimental group 2, the white translucent tissues did notfill the defects completely; and in the two experimental groups, the new cartilage tissues demarcated from the surrounding cartilage,chondrocytes distributed uniformly but without direction; a l ittle fibrous tissue formed in the control group 4 weeks postoperatively. In the experimental group 1, the defects were filled completely with white, smooth and translucent cartilage tissue without clear l imit with normal cartilage; while in the experimental group 2, white translucent tissues formed, the boundary still could be recognized; in the two experimental groups, the thickness was similar to that of the normal cartilage; the cells paralleled to articular surface in the surface layer, but in the deep layer, the cells distributed confusedly, the staining of matrix was positive but a l ittle weak; subchondral bone and tide mark recovered and the new tissue finely incorporated with normal cartilage;however, in the control group, there was a l ittle of discontinuous fibrous tissue, chondrocytes maldistributed in the border andthe bottom of the defects 12 weeks postoperatively. In the experimental group 1, white translucent cartilage tissues formed, the boundary disappeared; in the experimental group 2, the color and the qual ity of new cartilage were similar to those of 12 weeks; in the two experimental groups, the thickness of the new cartilage, which appeared smooth, was similar to that of the normal cartilage, the chondrocytes arranged uniformly but confusedly; the staining of matrix was positive and subchondral bone and tide mark recovered, the new tissue finely incorporated with normal cartilage; in the control group, a layer of discontinuous fibrous tissue formed in the bottom of the defects 24 weeks postoperatively. Results of histological grade showed that there were significantdifference between experimental group (1 and 2) and control group at any time point (P lt; 0.01); the scores of 12 weeks and 24 weeks in experimental group 1 and 2 had a significant difference compared with that of 4 weeks (P lt; 0.01), there was no significant difference between 12 weeks and 24 weeks (P gt; 0.05), and there were no significant difference between the two experimental groups at the same time point (P gt; 0.05). Conclusion Both PLGA and collagen sponge as a carrier compounded with rhBMP-2 can repair articular cartilage defects.
Objective To evaluate the effect of implantation of the complex of high viscous chitosan/glycerol phosphate with demineral ized bone matrix (HV-C/GP-DBM) in repairing cartilage defects of rabbits. Methods HV-C/ GPDBM was prepared by compounding HV-C/GP and DBM by 2:1 (W/W). Twenty-four 34-week-old New Zealand white adult rabbits, weighing 3.5-4.5 kg, were included. A bit with the diameter of 3.5 mm was used to drill 3-cm-deep holes in both sides of femoral condyle to make cartilage defects. The complex of HV-C/GP-DBM was then injected into the right holes as the experimental group and the left ones serve as the control group. The rabbits were killed at 4, 8 and 16 weeks after theoperation, respectively. The obtained specimens were observed macroscopically, microscopically and histologically. According to the International Cartilage Repair Society Histological Scoring (ICRS), the effect of cartilage repair was assessed at 16 weeks postoperatively. Results At 4-8 weeks postoperatively, in the experimental group, the defects were filled with hyal ine cartilage-l ike tissues; the majority of chitosan degradated; and the DBM particles were partly absorbed. However, in the control group, there were small quantities of discontinuous fibrous tissues and maldistributed chondrocytes at the border and the bottom of the defects. At 16 weeks postoperatively, 6 joints in the experimental group had smooth surface, and the defects were basically repaired by hyal ine cartilage-l ike tissues. The newly-formed tissues integrated well with the surrounding area. Under the cartilage, the new bone formation was still active and some DBM particles could be seen. However, the defects in the control group were repaired by fibrous tissues. The result of histological scoring of the specimens at 16 weeks showed that a total of 6 aspects including formation of chondrocytes and integration with the surrounding cartilages were superior in the experimental group to those in the control group, and there were significant differences between the two groups (P lt; 0.05). Conclusion The biodegradable and injectable complex of HV-C/GP-DBM with good histocompatibil ity and non-toxic side effects can repair cartilage defects and is a promising biomaterial for cartilage defect repair.
ObjectiveTo study the effect and feasibility of poly-lactide-co-glycolide (PLGA) loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) on repairing articular cartilage defect in rabbits. Methods PLGA was made into cylinders which were 4 mm in diameter and 3 mm in thickness. rhBMP-2 was fully homogenated before used. PLGA combined with 0.5 mg rhBMP-2 under the condition of vacuum(700 mmHg),and then lyophilized, packed ,sterilized with ethylene oxide and reserved. Defects of 4 mm in diameter and reaching medullary cavity were made in femoral condyles of 72 two-month-old New Zealand white rabbits. The 36 right defects were repaired with PLGA-rhBMP-2 composites as the experimental group, the 36 left defects with PLGA only as PLGA group, the other 36 left defects were left untreated as control group, and the other 36 right defects with PLGA-MSCs composites as cell group. At 4, 8, 12, 24, 36 and 48 weeks after operation, macroscopical and microscopical observations were made, and the histological grade wasdone.Results After 4 weeks of operation: In the experimental group and cell group, defects were filled with white translucent tissue which appeared smooth and soft; the matrix around chondrocytes was weakly metachromatic, the newly formed cartilage tissue was thicker than normal cartilage tissue; there was no formed tissue in the PLGA group and the blank control group. After 8 weeks of operation: In the experimental group and cell group, the new tissue was white, translucent, tenacious and smooth. The boundary with normal cartilage became vague. New cartilage cells distributed evenly. The cells of the surface layerparalleled, but the deeper layer lost directivity. The matrix dyed weakly. The new cartilage gradually became thinner, but it still thicker than the normal cartilage ones. The PLGA degraded besides some drops.In the blank control group and PLGA group, a little white membrane formed at the bottom of the defect. After 1224 weeks of operation: In the experimental group and cell group, defects were filled with new tissues which were white, translucent, tenacious and smooth. The boundary disappeared.The thickness of the new cartilage was similar to that of the normal ones. The cells of the surface layer paralleled to each other,but the cells of the deeper layer tended to arrange vertically. The matrix around chondrocytes was metachromatic,but the color was lighter than that of the normal cartilage. Bone under the cartilage and the tide mark recovered. The new cartilage linked with nomal cartilage finely.In the blank control group and PLGA group, there was a little fibrous tissue at the bottom of the defect withe obvious boundary. After 36 weeks and 48 weeks of operation:in the experimental group and the cell group, the new cartilage was slightly white,continuous and less smooth. The boundary disappeared. There was no proliferated synovial membrane.The thickenss of the new cartilage was thinner than that of the normal ones. The matrix around chondrocytes was weakly metachromatic. In the blank control group and PLGA group, the defect still existed, but became smaller.At the bottom of the defect, fibrous tissues formed. Some cartilage denudated and became less smooth.Some bone under cartilage exposed,and the synovial membrane became thick. The histologic grade of the repair tissue at 12 weeks and 24 weeks of operation in experimental group and cell group was significantly different from that at 4, 8 and 48 weeks of operation(Plt;0.01). There was also significant difference in the experimental group and cell group compared with the blank control group and PLGA group at each time after operation(Plt;0.01). But there was no significant difference between the experimental group and the cell group. Conclusion In the course of degradation。。。。。。.
ObjectiveTo compare difference in the establishment of animal model of cartilage defect by resection of medial collateral ligament and meniscus and by cartilage excavation so as to provide a proper way for the choose of animal model preparation of catilage defect.
MethodsTen healthy beagles, male or female, weighing 5.0-10.0 kg, were randomly divided into 3 groups. Resection of knee collateral ligament and meniscus was performed on 4 beagles of group A, cartilage excavation of knee-joints in 4 beagles of group B, and no treatment on 2 beagles of group C as controls. At 16 weeks after modeling, MRI, gross observation, HE staining, Safranin O staining, and toluidine blue staining were performed, and Osteoarthritis Research Society International (OARSI) score was recorded.
ResultsMRI and histology observation showed no obvious cartilage defect in group A; obvious cartilage defects were observed in group B and gross observation showed dramatic dark red cartilage defects. OARSI score was significantly lower in group A (0.940±0.574) than group B (4.500±0.516) (t=18.461, P=0.000).
ConclusionThe cartilage excavation is better than resection of both meniscus and medial collateral ligament, which provides a good method of establishing an animal model of cartilage defect at 16 weeks after operation.