Objective To determine whether the transforminggrowth factor β1 (TGF-β1) is a key regulatory molecule required for an increase or a balance of extracellular matrix (ECM) and DNA synthesis in the goat passaged nucleus pulposus (NP) cells. Methods The NP cells isolated from the goat intervertebral discs were cultured in vitro for a serial of passages and transfected with the replicationincompetent adenoviral vectors carrying the human TGF-β1 (hTGF-β1) or lacZ genes. Then, they were cultured in monolayer or alginate bead 3dimensional (3-D) systems for 10 days.The changes in the production and the molecular components of ECM that occurredin the NP cells transfected with Ad/hTGF-β1 or the controls were evaluated by Westernblot and absorbance of glycosaminoglycan (GAG)-Alcian Blue complexes. Differences of DNA synthesis in the variant cells and culture systems were assessed by fluorometric analysis of the DNA content. ResultsA quantitation in the variant culture systems indicated that in monolayers the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher cell viability and more DNA synthesis(P<0.05); however, in the alginate 3-D culture system, the NP cells transfected with Ad/hTGF-β1 did not have any significant difference from the controls(P>0.05). The Western blotting analysis ofthe protein sample isolated from the variant cells for TGF-β1, type Ⅱ collagen, and Aggrecan expression indicated that in the monolayers and alginate 3-D culture systems the NP cells at Passage 3 transfected with Ad/hTGF-β1 revealed much higher protein levels than the controls(P<0.05); whereas the type Ⅰcollagen content was much lower than the controls (P<0.05), but a significatly increased ratio of type Ⅱ/type Ⅰ collagen was found in both of the cell culture systems(P<0.05). The GAG quantification also showed a positive result in both the cell culture systems and the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher GAG content than the controls(P<0.05). Conclusion To a greaterextent, hTGF-β1 can play a key role in maintaining the phenotype of the NP cells and can still have an effect of the phenotypic modulation after a serial of the cell passages. The NP cells that are genetically manipulated to express hTGF-β1 have a promising effect on the restoration of the intervertebral disc defects. The NP cells transfected with Ad/hTGF-β1 cultured in the 3-D alginate bead systems can show a nearly native phenotype.
Objective To investigate the effect of acid, basic fibroblast growth factor (aFGF, bFGF) and epidermal growth factor (EGF), andtheir combination on the proliferation of rabbit anterior cruciate ligament (ACL) and medial collateral ligament (MCL) in vitro. Methods Thecells of ACL and MCL were isolated and subcultured from the knee joints of tenweek-old New Zealand white rabbits. The cells were seeded into 96-well corning cluster plates. Three growth factors of different concentration alone or in combination were added into the culture medium respectively, which were 0, 1, 5, 10, 50 and 100 ng/ml for aFGF, bFGF and 0, 1.56, 3.13, 6.25, 12.5, 25 and 50 ng/ml for EGF. The proliferation of the fibroblasts was measured for 48 h with XTT method. Results All of the three growth factors alone promoted the cell proliferation of ACL and MCL fibroblasts. The concentration of aFGF hada significant effect on the proliferation of both ACL and MCL fibroblasts. The concentration of 1 ng/ml bFGF and 5 ng/ml EGF was most effective in promoting the proliferation of ACL, and both bFGF and EGF had a significant effect on MCL. 5ng/ml aFGF with 50 ng/ml EGF had effect on ACL. 1 ng/ml aFGF with 3.13 ng/ml EGF had effect on MCL. Conclusion The three growth factors may promote the cell proliferation of ACL and MCL. These findings suggest that topical application of aFGF, either alone or in combination with EGF may have the potential to promote the proliferation of rabbit ACL and MCL,and aFGF of low concentration in combination with EGF is more effective than single growth factor.
In order to study the biological properties of fibroblasts isolated from different tissues. The fibroblasts from normal skin, hypertrophic scar and keloid were cultured, respectively, in vitro, and their morphologies and growth kinetics were compared. The results revealed that although fibroblasts in keloid were irregularly arranged, crisscross and overlapping with loss of polarization, there was no significant difference in the 3 groups so far the cellular morphology of fibroblast itself, cellular growth curve, cellular mitotic index, cloning efficiency and DNA content provided those cultures were in the same cellular density and culture conditions. It was concluded that fibroblasts isolated from culture of normal skin, hypertrophic scar and keloid in vitro showed no significant difference in morphology and growth kinetics, on the contrary, their biological behaviors were quite similar.
Objective To observe the effects of culture medium of amniotic cells on NO and NOS in retinal tissues of rabbits in vitro in order to provide a protective method for antioxidation in retina transplantation. Methods Thirty adult healthy rabbits (30 right eyes) were divided into 3 groups. Group I: fresh retinal tissue; group II: routine culture medium; group III: culture medium of amniotic cells. The retinal tissues in group II and III were cultured in the corresponding culture medium for 1 week. The content of NO and NOS in retinal tissues in the 3 groups were determined. Results Compared with group I, the content of NO and NOS of group II increased obviously (t=3.821, 3.854; P<0.001). There was no statistical difference of content of NO and NOS between group I and III (t=1.657, 1.745; P>0.05). Conclusion Culture medium of amniotic cells may remove free radicals and enhance the ability of antioxidation. (Chin J Ocul Fundus Dis,2004,20:366-368)
Objective To investigate the role of transforming growth factorβ3 (TGF-β3) on the amylase secretion of rat submandibular gland cells(RSGCs).Methods The RSGCs were cultured and identified. The expressions of CK 8.13, S100 and Vimentin in the RSGCs were examined by immunohistochemical staining. The experimental group was divided into 5 groups according to differentconcentrations of TGF-β3 (0.5, 1.0, 5.0, 10.0 and 25.0 ng/ml) and no TGF-β3 culture was used as control group. The effects ofTGF-β3 on the cell proliferation and amylase secretion were examined at the24th, the 48th, the 72nd and the 96th hour. MTT colorimetric method was used to estimate vital force of culture cells. Amylase protein was assayed by autobiochemistry equipment and Western blotting.Results The RSGCs were stained positively for CK 8.13 and S-100, but negatively for Vimentin. There were no significant differences in absorbency between the experimental groups and the control group(Pgt;0.05). Compared with the control group,TGF-β3 at concentrations of 0.5-10.0 ng/ml significantly stimulated the amylase secretion of RSGCs after 72 and 96 hours(Plt;0.01). But high concentration of TGF-β3 (25.0ng/ml) showed no stimulation. Western blotting demonstrated that the cultured RSGCs and submandibular gland had the same band of amylase electrophoresis.Conclusion TGF-β3 can stimulate RSGCs to differentiate and to secrete amylase, but TGF-β3 has no effect on proliferation ofRSGCs.
Objective To investigate the feasibil ity and effect of inducing adi pose-derived stem cells (ADSCs) treated with growth differentiation factor 5 (GDF-5) to undergo chondrogenic differentiation in vitro. Methods Six healthy Japanese rabbits aged 3 months (2-3 kg) of clean grade were chosen, irrespective of sex. ADSCs were isolated and cultured with collagenase digestion, then were detected and identified by vimentin immunohistochemistry and CD44, CD49d, CD106immunofluorescence staining. ADSCs at passage 3 were used and the cell density was adjusted to 1 × 106/mL, then the ADSCs were treated with 0, 10, 100 ng/mL GDF-5 and common cultural medium, respectively. The morphology changes of the induced ADSCs were observed by inverted contrast phase microscope and their growth state were detected by MTT. The mRNA quantities of Col II and proteoglycan expressed by the induced ADSCs were detected with RT-PCR. The Col II proteoglycan synthesized by the induced ADSCs were detected with alcian blue staining, toluidine blue staining, immunohistochemistry staining, and Western blot method. Results ADSCs mostly presented small sphere, fusiform and polygon shape with positive expression of CD44 and CD49d and negative expression of CD106 and vimentin. The ADSCs treated with 100 ng/mL GDF-5 presented sphere or sphere-l ike change and vigorous prol iferation. The mRNA quantities of Col II and proteoglycan synthesized by the induced ADSCs treated with 0, 10, 100 ng/mL GDF-5 and common cultural medium increased in a dose-dependent manner at 7 days. There were significant differences among all the groups (P lt; 0.05), except that no significant difference was evident between the 0 ng/mL group and the 10 ng/mL group (P gt; 0.05). When ADSCs were treated with 100 ng/mL GDF-5 for 14 days, the Col II and the mRNA and protein quantities of ptoteoglycan reached the peak, and the results of alcian blue, toluidine blue and Col IIimmunohistochemistry staining were positive. Conclusion ADSCs treated with certain concentration of GDF-5 have higher expression of Col II and proteoglycan and possess partial biological function of chondrocyte.
Objective
To describe cultured human retinal pigment epithelial (RPE) cells transdifferentiation and investigate the effects of human vitreous fluid on the morphologic and cytoskeleton changes of RPE cells in vitro.
Methods
Cytoskeleton characteristics in the 2nd, 5th, 8th passage of RPE cells in normal culture, which included cytokeratin 18 (CK18) and α-smooth muscle actin (α-SMA) were analyzed by Western blot. RPE cells were cultured in human vitreous-conditioned medium (VCM) at the concentration of 1∶4 for 6 days, morphologic changes were examined by light and electron microscopy, and cytoskeleton characteristics were analyzed by imunocytochemistry and Western blot.
Results
During culture in vitro, RPE cells lost epithelial characteristics and aquired fibroblast-like phenotype. The expression of CK18 was the highest at the 5th passage, and it decreased in the following passage, but α-SMA increased gradually. The morphologic transdifferentiation from epithelial to fibroblast-like cells of RPE was accelerated by VCM. Ultrastructural changes such as decreased microvilli and gradually increased rough endoplasmic reticulum and Golgi complex were found during the cultivation. CK18 produced by RPE cells decreased in VMC (P<0.05), and α-SMA increased (P<0.01).
Conclusion
Morphologic changes in epithelialmesenchymal transdifferenetiation of RPE cells are stimulated by VCM and accomplied by the shift of cytoskeleton proteins, The results imply that cells migration may be decreased and contraction may be enhanced in VCM. It may suggest that vitreous accelerates the pathogenesis of PVR and RPE cells play an important role.
(Chin J Ocul Fundus Dis, 2002, 18: 289-292)
Abstract An experiment was carried out to investigate the possibility of the establishment of an osteoblasts bank which could supply osteoblasts in repairing bone defect. Osteoblasts were isolated from thetibial periosteum of eight New-Zealand rabbits and cultured in votro. A bone defect, 1.5cm in length was made in both radii of each of the 8 rabbits. The cultivated osteoblasts, gelfoam as a carrier were randomly implanted into the defects of the radii of rabbits. Accordingly, the contralateral radial defects wereimplanted with gelfoam absorbed with the Hanks solution as control. The healing of bone defects was evaluated by roentgenographic examination at 2, 4, 8 and 12 weeks after operation, respectively. It was shown that the implanted cells had osteogenetic capability and could be possible to promote healing of the bone defects. It was suggested that further study needed to be carried out in this field.
The effects of pentagastrin (PG) on the viable cell count (Α value) and the synthesis of DNA (CPM value) of primary cultured large bowel carcinoma cells in 25 patients were evaluated in vitro by MTT assay,3H-TdR incorporation. The results showed that Α value and CPM value in well, moderately and poorly-differentiated carcinoma cells were higher than normal control (Plt;0.01,P<0.05). The proliferative effect was significant at a dose of 0.3907 μg/ml in well-differentiated carcinoma cells, and at a dose of 6.2500μg/ml in moderately and poorly-differentiated carcinoma cells. These indicat that PG has the proliferative effect on large bowel carcinoma cells. These results provide an experimental foundation for the endocrine therapy for patients with large intestine carcinoma, especially by using gastrin receptor antagonists for well-differentiated carcinoma.
Objective
To investigate the bloodretinal barrier(BRB)function of porcine retinal pigment epithelial(RPE)cells cultured in vitro.
Methods
Primary porcine RPE cells were cultured,and the third generation were inoculated in a microporous filter with the filter membrane of polyvinylpyrrolidone(PVP)-free polycarbonate membrane.After 1,2,3 and 4 weeks of culture,the surface of filter membrane was observed by light microscope,and after 2 weeks of culture,the section of filter membrane was observed by light microscope and transmission electron microscope.Transepithelial electrical resistance(TER)was detected and the permeability was measured with fluorescein sodium(FS)and horseradish peroxidase(HRP).
Results
Primary porcine RPE cells were cultured successfully.RPE cells converged1week after inoculation; 2 and 3 weeks after inoculation,the density of RPE cells did not changed obviously; 4 weeks after inoculation,the density of RPE cells decreased.The characteristics of polarized growth of monolayer were found in RPE cells on the surface of filter membrane; 2 weeks after inoculation,the TER of RPE cells was(97.44plusmn;11.36)Omega;/cm2 which maintained till the 3rd week after inocubation.After incubated for 30 minutes,only 0.27% of FS and 0.17% HRP reached the inferior filter membrane,and the permeability rate of SF with low molecular weight was higher than which of HRP with high molecular weight.
Conclusions
The filter with PVPfree polycarbonate membrane may be used to set up the model of RPE cells with polarized growth of monolayer and investigate the barrier function of RPE cells.
(Chin J Ocul Fundus Dis, 2006, 22: 188-191)