1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Convolutional neural network" 24 results
        • Establishment and test of intelligent classification method of thoracolumbar fractures based on machine vision

          Objective To develop a deep learning system for CT images to assist in the diagnosis of thoracolumbar fractures and analyze the feasibility of its clinical application. Methods Collected from West China Hospital of Sichuan University from January 2019 to March 2020, a total of 1256 CT images of thoracolumbar fractures were annotated with a unified standard through the Imaging LabelImg system. All CT images were classified according to the AO Spine thoracolumbar spine injury classification. The deep learning system in diagnosing ABC fracture types was optimized using 1039 CT images for training and validation, of which 1004 were used as the training set and 35 as the validation set; the rest 217 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. The deep learning system in subtyping A was optimized using 581 CT images for training and validation, of which 556 were used as the training set and 25 as the validation set; the rest 104 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. Results The accuracy and Kappa coefficient of the deep learning system in diagnosing ABC fracture types were 89.4% and 0.849 (P<0.001), respectively. The accuracy and Kappa coefficient of subtyping A were 87.5% and 0.817 (P<0.001), respectively. Conclusions The classification accuracy of the deep learning system for thoracolumbar fractures is high. This approach can be used to assist in the intelligent diagnosis of CT images of thoracolumbar fractures and improve the current manual and complex diagnostic process.

          Release date:2021-11-25 03:04 Export PDF Favorites Scan
        • Coronary artery segmentation based on Transformer and convolutional neural networks dual parallel branch encoder neural network

          Manual segmentation of coronary arteries in computed tomography angiography (CTA) images is inefficient, and existing deep learning segmentation models often exhibit low accuracy on coronary artery images. Inspired by the Transformer architecture, this paper proposes a novel segmentation model, the double parallel encoder u-net with transformers (DUNETR). This network employed a dual-encoder design integrating Transformers and convolutional neural networks (CNNs). The Transformer encoder transformed three-dimensional (3D) coronary artery data into a one-dimensional (1D) sequential problem, effectively capturing global multi-scale feature information. Meanwhile, the CNN encoder extracted local features of the 3D coronary arteries. The complementary features extracted by the two encoders were fused through the noise reduction feature fusion (NRFF) module and passed to the decoder. Experimental results on a public dataset demonstrated that the proposed DUNETR model achieved a Dice similarity coefficient of 81.19% and a recall rate of 80.18%, representing improvements of 0.49% and 0.46%, respectively, over the next best model in comparative experiments. These results surpassed those of other conventional deep learning methods. The integration of Transformers and CNNs as dual encoders enables the extraction of rich feature information, significantly enhancing the effectiveness of 3D coronary artery segmentation. Additionally, this model provides a novel approach for segmenting other vascular structures.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        • Automatic sleep staging model based on single channel electroencephalogram signal

          Sleep staging is the basis for solving sleep problems. There’s an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        • Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network

          Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.

          Release date:2025-02-21 03:20 Export PDF Favorites Scan
        • Single-channel electroencephalogram signal used for sleep state recognition based on one-dimensional width kernel convolutional neural networks and long-short-term memory networks

          Aiming at the problem that the unbalanced distribution of data in sleep electroencephalogram(EEG) signals and poor comfort in the process of polysomnography information collection will reduce the model's classification ability, this paper proposed a sleep state recognition method using single-channel EEG signals (WKCNN-LSTM) based on one-dimensional width kernel convolutional neural networks(WKCNN) and long-short-term memory networks (LSTM). Firstly, the wavelet denoising and synthetic minority over-sampling technique-Tomek link (SMOTE-Tomek) algorithm were used to preprocess the original sleep EEG signals. Secondly, one-dimensional sleep EEG signals were used as the input of the model, and WKCNN was used to extract frequency-domain features and suppress high-frequency noise. Then, the LSTM layer was used to learn the time-domain features. Finally, normalized exponential function was used on the full connection layer to realize sleep state. The experimental results showed that the classification accuracy of the one-dimensional WKCNN-LSTM model was 91.80% in this paper, which was better than that of similar studies in recent years, and the model had good generalization ability. This study improved classification accuracy of single-channel sleep EEG signals that can be easily utilized in portable sleep monitoring devices.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        • A survey on the application of convolutional neural networks in the diagnosis of occupational pneumoconiosis

          Pneumoconiosis ranks first among the newly-emerged occupational diseases reported annually in China, and imaging diagnosis is still one of the main clinical diagnostic methods. However, manual reading of films requires high level of doctors, and it is difficult to discriminate the staged diagnosis of pneumoconiosis imaging, and due to the influence of uneven distribution of medical resources and other factors, it is easy to lead to misdiagnosis and omission of diagnosis in primary healthcare institutions. Computer-aided diagnosis system can realize rapid screening of pneumoconiosis in order to assist clinicians in identification and diagnosis, and improve diagnostic efficacy. As an important branch of deep learning, convolutional neural network (CNN) is good at dealing with various visual tasks such as image segmentation, image classification, target detection and so on because of its characteristics of local association and weight sharing, and has been widely used in the field of computer-aided diagnosis of pneumoconiosis in recent years. This paper was categorized into three parts according to the main applications of CNNs (VGG, U-Net, ResNet, DenseNet, CheXNet, Inception-V3, and ShuffleNet) in the imaging diagnosis of pneumoconiosis, including CNNs in pneumoconiosis screening diagnosis, CNNs in staging diagnosis of pneumoconiosis, and CNNs in segmentation of pneumoconiosis foci to conduct a literature review. It aims to summarize the methods, advantages and disadvantages, and optimization ideas of CNN applied to the images of pneumoconiosis, and to provide a reference for the research direction of further development of computer-aided diagnosis of pneumoconiosis.

          Release date: Export PDF Favorites Scan
        • Multi-task motor imagery electroencephalogram classification based on adaptive time-frequency common spatial pattern combined with convolutional neural network

          The effective classification of multi-task motor imagery electroencephalogram (EEG) is helpful to achieve accurate multi-dimensional human-computer interaction, and the high frequency domain specificity between subjects can improve the classification accuracy and robustness. Therefore, this paper proposed a multi-task EEG signal classification method based on adaptive time-frequency common spatial pattern (CSP) combined with convolutional neural network (CNN). The characteristics of subjects' personalized rhythm were extracted by adaptive spectrum awareness, and the spatial characteristics were calculated by using the one-versus-rest CSP, and then the composite time-domain characteristics were characterized to construct the spatial-temporal frequency multi-level fusion features. Finally, the CNN was used to perform high-precision and high-robust four-task classification. The algorithm in this paper was verified by the self-test dataset containing 10 subjects (33 ± 3 years old, inexperienced) and the dataset of the 4th 2018 Brain-Computer Interface Competition (BCI competition Ⅳ-2a). The average accuracy of the proposed algorithm for the four-task classification reached 93.96% and 84.04%, respectively. Compared with other advanced algorithms, the average classification accuracy of the proposed algorithm was significantly improved, and the accuracy range error between subjects was significantly reduced in the public dataset. The results show that the proposed algorithm has good performance in multi-task classification, and can effectively improve the classification accuracy and robustness.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        • Fatigue driving detection based on prefrontal electroencephalogram asymptotic hierarchical fusion network

          Fatigue driving is one of the leading causes of traffic accidents, posing a significant threat to drivers and road safety. Most existing methods focus on studying whole-brain multi-channel electroencephalogram (EEG) signals, which involve a large number of channels, complex data processing, and cumbersome wearable devices. To address this issue, this paper proposes a fatigue detection method based on frontal EEG signals and constructs a fatigue driving detection model using an asymptotic hierarchical fusion network. The model employed a hierarchical fusion strategy, integrating an attention mechanism module into the multi-level convolutional module. By utilizing both cross-attention and self-attention mechanisms, it effectively fused the hierarchical semantic features of power spectral density (PSD) and differential entropy (DE), enhancing the learning of feature dependencies and interactions. Experimental validation was conducted on the public SEED-VIG dataset. The proposed model achieved an accuracy of 89.80% using only four frontal EEG channels. Comparative experiments with existing methods demonstrate that the proposed model achieves high accuracy and superior practicality, providing valuable technical support for fatigue driving monitoring and prevention.

          Release date:2025-06-23 04:09 Export PDF Favorites Scan
        • Research progress of breast pathology image diagnosis based on deep learning

          Breast cancer is a malignancy caused by the abnormal proliferation of breast epithelial cells, predominantly affecting female patients, and it is commonly diagnosed using histopathological images. Currently, deep learning techniques have made significant breakthroughs in medical image processing, outperforming traditional detection methods in breast cancer pathology classification tasks. This paper first reviewed the advances in applying deep learning to breast pathology images, focusing on three key areas: multi-scale feature extraction, cellular feature analysis, and classification. Next, it summarized the advantages of multimodal data fusion methods for breast pathology images. Finally, the study discussed the challenges and future prospects of deep learning in breast cancer pathology image diagnosis, providing important guidance for advancing the use of deep learning in breast diagnosis.

          Release date: Export PDF Favorites Scan
        • Fetal electrocardiogram signal extraction and analysis method combining fast independent component analysis algorithm and convolutional neural network

          Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品