With the developing of three-dimensional (3D) printing technology, it is widely used in the treatment of bone tumors in the clinical orthopedics. Because of the great individual differences in the location of bone tumor, resection and reconstruction are difficult. Based on 3D printing technology, the 3D models can be prepared to show the anatomical part of the disease, so that the surgeons can create a patient-specific operational plans based on better understand the local conditions. At the same time, preoperative simulation can also be carried out for complex operations and patient-specific prostheses can be further designed and prepared according to the location and size of tumor, which may have more advantages in adaptability. In this paper, the domestic and international research progress of 3D printing technology in the treatment of limb bone tumors in recent years were reviewed and summarized.
ObjectiveTo review the current research status of in situ three-dimensional (3-D) printing technique and future trends.
MethodsRecent related literature about in situ 3-D printing technique was summarized, reviewed, and analyzed.
ResultsBased on the cl inical need for surgical repair, in situ 3-D printing technique is in the preliminary study, mainly focuses on in situ dermal repair and bone and cartilage repair, and succeeds in experiments, but there are still a lot of problems for cl inical application.
ConclusionWith the development of in situ 3-D printing technique, it will provide patients with real-time and in situ digital design and 3-D printing treatment with a timely and minimally invasive surgical repair process. It will be widely used in the future.
Objective To explore the design points of a three-dimensional (3D) printed customized cementless intercalary endoprosthesis with an intra-neck curved stem and to evaluate the key points and mid-term effectiveness of its application in the reconstruction of ultrashort bone segments in the proximal femur. Methods Between October 2015 and January 2021, 17 patients underwent reconstruction with a 3D printed-customized cementless intercalary endoprosthesis with an intra-neck curved stem. There were 11 males and 6 females, the age ranged from 10 to 76 years, with an average of 30.1 years. There were 9 cases of osteosarcoma, 4 cases of Ewing sarcoma, 2 cases of chondrosarcoma, 1 case of liposarcoma, and 1 case of myofibroblastoma. The disease duration was 5-14 months, with an average of 9.5 months. Enneking staging included 16 cases of stage ⅡB and 1 case of stage ⅢB. The distances from the center of the femoral head to the body midline and the acetabular apex were measured preoperatively on X-ray images. Additionally, the distances from the tip of the intra-neck curved stem to the body midline and the acetabular apex were measured at immediate postoperatively and last follow-up. The neck-shaft angle was also measured preoperatively, at immediate postoperatively, and at last follow-up. The status of osseointegration at the bone-prosthesis interface and bone growth into the prosthesis surface were assessed by X-ray films, CT, and Tomosynthesis-Shimadzu metal artefact reduction technology (T-SMART). The survival status of the patients, presence of local recurrence or distant metastasis, and occurrence of postoperative complications were assessed. The recovery of lower limb function was evaluated pre- and post-operatively using the Musculoskeletal Tumor Society (MSTS) scoring system, and pain relief was evaluated using the visual analogue scale (VAS) scores. Results The patient’s femoral resection length was (163.1±57.5) mm, the remaining proximal femoral length was (69.6±9.3) mm, and the percentage of femoral resection length/total femoral length was 38.7%±14.6%. All 17 patients were followed up 25-86 months with an average of 58.1 months. During the follow-up, 1 patient died of lung metastasis at 46 months postoperatively, and the remaining 16 patients survived tumor-free. There was no complication such as periprosthetic infection, delayed incision healing, aseptic loosening, prosthesis fracture, or periprosthetic fracture. No evidence of micromotion or wear around the implanted stem of the prosthesis was detected in X-ray and T-SMART evaluations. There was no significant radiolucent lines, and radiographic evidence of bone ingrowth into the bone-prosthesis interface was observed in all stems. There was no significant difference in the distance from the tip of the curved stem to the body midline and the apex of the acetabulum at immediate postoperatively and last follow-up compared with the distance from the center of the femoral head to the body midline and the apex of the acetabulum before operation, respectively (P>0.05), and there was no significant difference in the above indexes between immediate postoperatively and last follow-up (P>0.05). The differences in the neck-shaft angle at various time points before and after operation were also not significant (P>0.05). At last follow-up, the MSTS score was 26.1±1.2 and the VAS score was 0.1±0.5, which were significantly improved when compared with those before operation [19.4±2.1 and 5.7±1.0, respectively] (t=14.735, P<0.001; t=21.301, P<0.001). At last follow-up, none of the patients walked with the aid of crutches or other walkers. Conclusion The 3D printed customized cementless intercalary endoprosthesis with an intra-neck curved stem is an effective method for reconstructing ultrashort bone segments in the proximal femur following malignant tumor resection. The operation is reliable, the postoperative lower limb function is satisfactory, and the incidence of complications is low.
Objective To investigate the effectiveness of LARS ligament and three-dimensional (3D) printed prosthesis on the combined reconstruction of radial hemicarpal joint after distal radius tumor resection. Methods The clinical data of 12 patients with combined reconstruction of radial hemicarpal joint with LARS ligament and 3D printed prosthesis after distal radius tumor resection between September 2017 and March 2021 were retrospectively analyzed. There were 7 males and 5 females with an average age of 41.8 years (range, 19-63 years). There were 8 cases on the left side and 4 cases on the right side, and 10 cases of giant cell tumor of bone and 2 cases of osteosarcoma. The disease duration ranged from 1 to 20 months, with an average of 8.1 months. The osteotomy length, operation time, and intraoperative blood loss were recorded, and the wrist function was evaluated by Mayo wrist score and Musculoskeletal Tumor Society (MSTS) score before and after operation. The grip strength of the affected limb was expressed by the percentage of grip strength of the healthy upper limb, and the range of motion (ROM) of the wrist joint was measured, including extension, flexion, radial deviation, and ulnar deviation; the bone ingrowth and osseointegration at the bone-prosthesis interface of the wrist joint were observed by radiographic follow-up; the possible wrist complications were recorded. ResultsAll 12 patients successfully completed the operation. The osteotomy length was 5.0-10.5 cm (mean, 6.8 cm), and the operation time was 180-250 minutes (mean, 213.8 minutes). The intraoperative blood loss was 30-150 mL (mean, 61.7 mL). All patients were followed up 11-52 months (mean, 30.8 months). Radiographic follow-up showed that bone ingrowth and osseointegration at the bone-prosthesis interface were observed in all patients, and biological fixation was gradually achieved. During the follow-up, the stability, motor function, and ROM of the wrist joint were good. There was no complication such as arthritis, subluxation, prosthesis loosening, and infection, and no tumor recurrence and metastasis. At last follow-up, the Mayo score was 82.1±5.4, and MSTS score was 27.5±1.5, which were significantly improved when compared with those before operation (48.8±13.5, 16.4±1.4; t=?10.761, P<0.001; t=?26.600, P<0.001). The grip strength of the affected side was 59%-88% of that of the healthy side, with an average of 70.5%. The ROM of wrist joint were 55°-80° (mean, 65.42°) in extension, 35°-60° (mean, 44.58°) in flexion, 10°-25° (mean, 17.92°) in radial deviation, 10°-25° (mean, 18.33°) in ulnar deviation. Conclusion The combined application of LARS ligament and 3D printed prosthesis is an effective way to reconstruct bone and joint defects after distal radius tumor resection. It can improve the function of wrist joint, reduce the incidence of complications, and improve the stability of wrist joint.
ObjectiveTo solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments.
MethodsThe model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control.
ResultsBiomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384±181) N and dynamic creep of (0.74±0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370±103) N and dynamic creep of (1.48±0.49) mm, showing significant differences (t=11.617,P=0.000; t=-2.991,P=0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface.
ConclusionLigament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.
ObjectiveTo review the research progress of adipose-derived stem cells (ADSCs) compound with three dimensional (3D) printing scaffold in tissue engineering of fat, bone, cartilage, blood vessel, hepatocyte, and so on.
MethodsThe recently published literature about ADSCs compound with 3D printing scaffold in tissue engineering at home and abroad was reviewed, analyzed, and summarized.
ResultsA large number of basic researches showed that ADSCs could differentiate into a variety of tissues on 3D printing scaffold and involve in tissue repair and regeneration. But there is still a long way between the basic theory and the clinical practice at the early stages of development.
ConclusionIt can effectively improve and restore the structure and function of the damaged tissue and organ to use ADSCs and 3D printing scaffold.
ObjectiveTo determine the feasibility of fabricating molds using a three-dimensional (3D) printer for producing customized bone cement for repairing bone defect.
MethodsBetween February 2015 and March 2016, 13 patients with bone defects were treated. There were 9 males and 4 females with an average age of 38.4 years (range, 20-58 years), including 7 cases of chronic osteomyelitis, 3 cases of bone tuberculosis, 2 cases of bone tumor, and 1 case of ischemic necrosis. The defect located at the humerus in 3 cases, at the femur in 4 cases, and at the tibia in 6 cases. The defect ranged from 4.5 to 8.9 cm in length (mean, 6.7 cm). Before operation, Mimics10.01 software was used to design cement prosthesis, 3-matic software to design shaping module which was printed by 3D technology. After removal of the lesion bone during operation, bone cement was filled into the shaping module to prepare bone cement prosthesis for repairing defect.
ResultsThe measurement result from Image J software showed that the match index of interface between the mirror restored digital and bone interface was 95.1%-97.4% (mean, 96.3%); the match index of interface between bone cement prosthesis and bone interface was 91.2%-94.7% (mean, 93.2%). It was one time success during separation between formed bone cement and shaping module without any shatter or fall off. All incisions healed by first intention. The cases were followed up 5-17 months (mean, 9.4 months). X-ray films and CT scans showed good position of bone cement prosthesis without any fracture; no peripheral fracture occurred.
Conclusion3D printing customized bone cement shaping module can shorten the operation time, and customized bone cement prothesis has good match with bone interface, so it can avoid further adjustment and accord with the biomechanical rules of surgical site.
Objective To explore the early clinical effect of 3D printing external fixed guide combined with video-assisted thoracic surgery (VATS) in the treatment of flail chest, and to provide evidence for the promotion of this technology. Methods Patients with flail chest treated in our hospital from January 2010 to January 2023 were retrospectively selected as the study objects. The trial group was treated with 3D printed external fixation guide combined with VATS, and the control group was treated with open reduction internal fixation. Operation time, intraoperative blood loss, closed thoracic drainage time, thoracic volume recovery, visual analogue scale (VAS) score 1 month after surgery and complications were compared between the two groups. Results A total of 40 patients were included, 20 in each group. In the experimental group, there were 13 males and 7 females, with an average age of 45.7±3.8 years. In the control group, there were 14 males and 6 females, with an average age of 47.3±4.1 years. There was no statistical difference in gender, age, number of rib fractures or VAS between the two groups (P>0.05). The surgery was successful in both groups, the wounds healed in stage Ⅰ, and the pain symptoms were significantly reduced. No postoperative complications occurred in the trial group, while chronic pain occurred in 1 patient, fracture malunion occurred in 1 patient and incision infection occurred in 1 patient in the control group, with a complication rate of 15.0%. Operation time, intraoperative blood loss and closed thoracic drainage time in trial group were lower than those in control group (P<0.05). There was no statistical difference in the recovery of thoracic volume and VAS at 1 month after operation (P>0.05). Conclusion 3D printing external fixation guide combined with VATS in the treatment of flail chest has satisfactory early curative effect, which has the advantages of minimally invasive, high efficiency, rapid recovery and reducing postoperative complications. This method can effectively reconstruct the shape of the chest, restore the volume of the chest.
ObjectiveTo summarize the research progress of several three-dimensional (3-D) printing scaffold materials in bone tissue engineering.
MethodThe recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized.
ResultsCompared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention.
ConclusionsThe development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.
Objecitve To investigate the effectiveness of three-dimensional (3D) printing-assisted vascularized fibular graft for repairing metatarsal defects. Methods Between November 2021 and February 2024, 11 patients with varying degrees of metatarsal defects caused by trauma were treated. There were 10 males and 1 female, aged 22-67 years, with a mean age of 51.2 years. The defect locations were as follows: the first metatarsal in 4 cases, the fifth metatarsal in 2 cases, the first and the second metatarsals in 1 case, the first to third metatarsals in 1 case, the third and the fourth metatarsals in 1 case, the third to fifth metatarsals in 1 case, and the first to fifth metatarsals in 1 case. The preoperative American Orthopaedic Foot & Ankle Society (AOFAS) score was 67.0 (48.5, 72.5). Based on 3D-printed bilateral feet models and mirrored healthy-side foot arch angles for preoperative planning and design, the vascularized fibular graft was performed to repair the metatarsal defects. At last follow-up, the medial and lateral longitudinal arches of bilateral feet were measured on weight-bearing X-ray films, and functional assessment was conducted using the AOFAS score.Results All operations were successfully completed, with an operation time ranging from 180 to 465 minutes (mean, 246.8 minutes). All incisions healed by first intention, with no occurrence of osteomyelitis. All patients were followed up 6-22 months (mean, 10 months). X-ray film reviews showed bone graft healing in all cases, with a healing time of 3-6 months (mean, 5 months). All patients underwent internal fixator removal at 6-12 months after operation. At last follow-up, no significant difference was observed in the medial and lateral longitudinal arches between the healthy and affected feet (P>0.05). The AOFAS score of the affected foot was 78.0 (73.5, 84.0), showing a significant improvement compared to the preoperative score (P<0.05). The effectiveness was rated as excellent in 1 case, good in 7 cases, fair in 2 cases, and poor in 1 case. Linear scarring remained at the donor site, with no functional impairment in adjacent joint movement. Conclusion 3D printing-assisted vascularized fibular graft for repairing metatarsal defects can effectively restore the physiological angle of the foot arch, facilitate the recovery of weight-bearing alignment, promote good bone healing, and yield satisfactory clinical outcomes.