ObjectiveTo study the preparation and properties of the hyaluronic acid (HA)/α-calcium sulfate hemihydrate (α-CSH)/β-tricalcium phosphate (β-TCP) material (hereinafter referred to as composite material). Methods Firstly, the α-CSH was prepared from calcium sulfate dihydrate by hydrothermal method, and the β-TCP was prepared by wet reaction of soluble calcium salt and phosphate. Secondly, the α-CSH and β-TCP were mixed in different proportions (10∶0, 9∶1, 8∶2, 7∶3, 5∶5, and 3∶7), and then mixed with HA solutions with concentrations of 0.1%, 0.25%, 0.5%, 1.0%, and 2.0%, respectively, at a liquid-solid ratio of 0.30 and 0.35 respectively to prepare HA/α-CSH/ β-TCP composite material. The α-CSH/β-TCP composite material prepared with α-CSH, β-TCP, and deionized water was used as the control. The composite material was analyzed by scanning electron microscope, X-ray diffraction analysis, initial/final setting time, degradation, compressive strength, dispersion, injectability, and cytotoxicity. ResultsThe HA/α-CSH/β-TCP composite material was prepared successfully. The composite material has rough surface, densely packed irregular block particles and strip particles, and microporous structures, with the pore size mainly between 5 and 15 μm. When the content of β-TCP increased, the initial/final setting time of composite material increased, the degradation rate decreased, and the compressive strength showed a trend of first increasing and then weakening; there were significant differences between the composite materials with different α-CSH/β-TCP proportion (P<0.05). Adding HA improved the injectable property of the composite material, and it showed an increasing trend with the increase of concentration (P<0.05), but it has no obvious effect on the setting time of composite material (P>0.05). The cytotoxicity level of HA/α-CSH/β-TCP composite material ranged from 0 to 1, without cytotoxicity. Conclusion The HA/α-CSH/β-TCP composite materials have good biocompatibility. Theoretically, it can meet the clinical needs of bone defect repairing, and may be a new artificial bone material with potential clinical application prospect.
A certain degree of varus alignment is physiological in the native knee, and alignment strategies such as kinematic and functional alignment permit residual postoperative varus. However, identical total varus angles may result from varying combinations of femoral and tibial varus, whose biomechanical implications for implant loading and ligament stress remain unclear. This study aims to investigate the biomechanical effects of different femoral–tibial varus configurations in total knee arthroplasty (TKA). Using combined geometric modeling and finite element analysis, TKA models with different varus combinations were constructed to evaluate changes in limb moment arms, polyethylene insert stress, and ligament forces during static knee flexion (0°–90°). Results demonstrated that a higher proportion of femoral varus, under equivalent total varus and flexion angles, led to reduced maximum polyethylene stress and decreased tension in the medial collateral ligament (MCL) and anterolateral ligament complex (ALL). Knee flexion angle had a more significant impact on polyethylene stress than varus: stress increased by approximately 2.48 times at 90° flexion compared to 0°, whereas 12° varus increased stress by only approximately 14%. The ALL experienced the greatest tensile load during flexion, indicating a key stabilizing role. In conclusion, optimizing the combination of femoral and tibial varus may help redistribute loads and improve implant longevity. This study reveals, from a biomechanical perspective, how different varus configurations affect stress distribution in the prosthesis and surrounding soft tissues, suggesting that intraoperative osteotomy strategies should comprehensively consider the combined alignment of the femur and tibia.