1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Decellular" 25 results
        • FABRICATION OF DECELLULARIZED SCAFFOLD OF HOMOGRAFT BIOPROSTHETIC TUBE VALVED WITH TWO KINDS OF CELL DETERGENTS

          Objective To compare the effect of fabricating decellularized scaffold of homograft bioprosthetic tube valved (HBTV) with two kinds of cell detergents and to provide a homograft bioprosthetic scaffold for fabrication of tissueengineering heart valve (TEHV). Methods The active cells in the HBTV, which conserved by liquid nitrogen, were decellularized by low osmotic pressure of Tris buffer, in which containing sodium dodecylsulphate (SDS) and deoxycholic acid (DOA) respectively. The leaflets or aortic wall was fixed with fixative and stained with hematoxylin and eosin, collagen fibers or elastic fibers for observation and photographs by light microscope or by scanning electron microscope (SEM) after decellularized. Results When the leaflets of HBTV were incubated togetherwith 0.03% SDS or 0.5% DOA of Tris buffer respectively for 48 hours, the activeendothelial cells (ECs) in the leaflets were not only decellularized completely, but also reserved the collagen fibers or elastic fibers integrally, which is two of the main components of extracellular matrix (ECM). A part of fibroblast inthe center leaflets was reserved. The morphologic structure of leaflets after decellularized was not significantly different from that before decellularized. The concentration of SDS was increased to 0.1% when decellularized the cells of aortic wall, but DOA was still kept 0.5%. Conclusion The better decellularizedscaffold of HBTV obtained was disposed by 0.03%-0.1% SDS or 0.5% DOA, which wasadvantageous to adhesiveness and amplification of implantation cells on the decellularized scaffold of HBTV in order that HBV reendothelialized or for the TEHVfabricated in vitro.

          Release date:2016-09-01 09:29 Export PDF Favorites Scan
        • Decellularized Xenogenic Valve Scaffolds Coated with Biodegradable Polymer for Heart Valve Tissue Engineering

          Objective To study and test novel hybrid valves in vitro and in vivo, and provide basis for clinical use in future. Methods The hybrid valves were fabricated from decellularized porcine aortic valves coated with poly (3-hydroxybutyrate-co-3hydroxyhexanoate, PHBHHx).(1)In the mechanical test in vitro, the uniaxial tensile biomechanics test of the fresh (n=12), uncoated (n=12) and hybrid valve leaflets (n=12) were investigated. (2)In study in vivo, hybrid valves(n=5) implanted in pulmonary position in sheep without cardiopulmonary bypass. Uncoated grafts (n=5) used as control. The specimens of the hybrid or uncoated valve in sheep were explanted and examined by scanning electron microscopy, histology, calcium content and immunofluorescence staining 18 weeks after surgery. Results The mechanical test in vitro revealed that coating with PHBHHx increased maximal tensile strength of hybrid valves compared with the fresh and uncoated state (P<0.05). The results in vivo indicated the hybrid valves maintained original shape and softness. Immunofluorescence staining for CD31 confirmed that the surface of hybrid valve was covered by confluent CD31+ cells.The interstitium of hybrid valve indicated that smooth muscle actin (SMA)+ cells population were similar to native valvular tissue. The calcium content of hybrid valve was significantly lower than that of uncoated valve leaflets (P<0.05). Conclusion Decellularized porcine aortic valves coated with PHBHHx have good biological and biomechanical characteristics. The hybrid valve may provide superior valve replacement with current techniques.

          Release date:2016-08-30 06:09 Export PDF Favorites Scan
        • HUMAN ADIPOSE-DERIVED STEM CELLS COMBINED WITH SMALL INTESNITAL SUBMUCOSA POWDER/CHITOSAN CHLORIDE-β-GLYCEROL PHOSPHATE DISODIUM-HYDROXYETHYL CELLULOSE HYBRID FOR ADIPOSE TISSUE ENGINEERING

          ObjectiveTo study the feasibility of human adipose-derived stem cells (hADSCs) combined with small intestinal submucosa powder (SISP)/chitosan chloride (CSCl)-β-glycerol phosphate disodium (GP)-hydroxyethyl cellulose (HEC) for adipose tissue engineering. MethodshADSCs were isolated from human breast fat with collagenase type I digestion, and the third passage hADSCs were mixed with SISP/CSCl-GP-HEC at a density of 1×106 cells/mL. Twenty-four healthy female nude mice of 5 weeks old were randomly divided into experimental group (n=12) and control group (n=12), and the mice were subcutaneously injected with 1 mL hADSCs+SISP/CSCl-GP-HEC or SISP/CSCl-GP-HEC respectively at the neck. The degradation rate was evaluated by implant volume measurement at 0, 1, 2, 4, and 8 weeks. Three mice were euthanized at 1, 2, 4, and 8 weeks respectively for general, histological, and immunohistochemical observations. The ability of adipogenesis (Oil O staining), angiopoiesis (CD31), and localized the hADSCs (immunostaining for human Vimentin) were identified. ResultsThe volume of implants of both groups decreased with time, but it was greater in experimental group than the control group, showing significant difference at 8 weeks (t=3.348, P=0.029). The general observation showed that the border of implants was clear with no adhesion at each time point;fat-liked new tissues were observed with capillaries on the surface at 8 weeks in 2 groups. The histological examinations showed that the structure of implants got compact gradually after injection, and SISP gradually degraded with slower degradation speed in experimental group;adipose tissue began to form, and some mature adipose tissue was observed at 8 weeks in the experimental group. The Oil O staining positive area of experimental group was greater than that of the control group at each time point, showing significant difference at 8 weeks (t=3.411, P=0.027). Immunohistochemical staining for Vemintin showed that hADSCs could survive at each time point in the experimental group;angiogenesis was most remarkable at 2 weeks, showing no significant differences in CD31 possitive area between 2 groups (P>0.05), but angiogenesis was more homogeneous in experimental group. ConclusionSISP/CSCl-GP-HEC can use as scaffolds for hADSCs to reconstruct tissue engineered adipose.

          Release date: Export PDF Favorites Scan
        • CycloRGD Peptide Regulates the Expression of Integrin αVβ3 Gene of Myofibroblast on the Decellularized Scaffolds

          Objective To observe whether Cyclo-RGDfK (Arg-Gly-Asp-D-Phe-Lys) could enhance the adhesion of myofibroblast to decellularized scaffolds and upregulate the expression of Integrin αVβ3 gene. Methods Myofibroblast from the rat thoracic aorta was acquired by primary cell culture. The expression of Vimentin and α-smooth muscle actin(α-SMA) has been detected by immunoflurescent labeling. Decellularized valves have been randomly divided into three groups (each n=7). Group A (blank control): valves do not receive any pretreatment; Group B: valves reacted with linking agent NEthylN(3dimethylaminopropyl)carbodiimide hydrochloride (EDC) for 36 hours before being seeded; Experimental group: Cyclo-RGD peptide has been covalently immobilized onto the surface of scaffolds by linking agent EDC. The fifth generation of myofibroblast has been planted on the scaffolds of each group. The adhesion of myofibroblast to the scaffolds was evaluated by HE staining and electron scanning microscope. The expression of Integrin αVβ3 was quantified by halfquantitative reverse transcriptionpolymerase china reaction (RT-PCR). Results We can see that myofibroblast has exhibited b positive staining for Vimentin and α-SMA. Besides, it has been shown that the expression of Integrin αVβ3 was much higher in the experimental group than that of the group A and group B(Plt;0.05). There was no statistically difference in group A and group B (P=0.900). Conclusion RGD pretreatment does enhance the adhesive efficiency of seeding cells to the scaffolds and this effect may be related to the upregulation of Integrin αVβ3.

          Release date:2016-08-30 06:09 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF DECELLULARIZATION AND APPLICATION IN TISSUE ENGINEERING

          Objective To review the decellularized methods for obtaining extracellular matrix (ECM) and the applications of decellularized ECM scaffold in tissue engineering. Methods Recent and related literature was extensively and comprehensively reviewed. The decellularized methods were summarized and classified. The effects of different sterilization methods on decellularized scaffolds were analyzed; the evaluation criterion of extent of decellularization was put forward; and the application of decellularized ECM scaffold in different tissues and organs engineering field was summarized. Results The decellularized methods mainly include physical methods, chemical methods, and biological methods, and different decellularization methods have different effects on the extent of cell removal and ECM composition and structure. Therefore, the best decellularization method will be chosen according to the characteristics of the tissues and decellularization methods to achieve the ideal result. Conclusion It is very important to choose the appropriate decellularized method for preparing the biological materials desired by tissue engineering. The biological scaffolds prepared by decellularized methods will play an important role in tissue engineering and regenerative medicine.

          Release date:2016-08-31 04:08 Export PDF Favorites Scan
        • OPTIMAL METHOD FOR RAT SKELETAL MUSCLE DECELLULARIZATION

          Objective To investigate an optimal method for SD rat skeletal muscle decellularization. Methods Sixteen SD rats (male and female) weighing 180-200 g were used. Thirty-six skeletal muscle bundles obtained from 10 rats were randomly divided into 3 groups: normal group (group A, n=4) received non-decellularization; time group (group T, n=16) andconcentration group (group C, n=16) underwent decellularization using hypotonic-detergent method. Concentration of sodium dodecyl sulfate (SDS) was 1.0% for T group, which was subdivided into groups T1, T2, T3 and T4 (n=4 per subgroup) according to different processing durations (24, 48, 72 and 96 hours). Group C was treated for 48 hours and subdivided into groups C1, C2, C3 and C4 (n=4 per subgroup) according to different SDS concentrations (0.5%, 1.0%, 1.5% and 2.0%). The muscle bundles of each group underwent HE staining observation and hydroxyproline content detection in order to get the optimal decellularization condition. Seven of 14 complete skeletal muscle bundles obtained from 6 SD rats were treated with the optimal decellularization condition (experimental group), and the rest 7 muscle bundles served as normal control (control group). The muscle bundles of each group were evaluated with gross observation, Masson staining and biomechanical test. Results HE staining: there was no significant difference between groups T1, T2, C1, C2 and C3 and group A in terms of muscle fiber; portion of muscle fibers in group C4 were removed; muscle fibers in group T3 were fully removed with a complete basement membrane structure; muscle fibers of group T4 were fully removed, and the structure of basement membrane was partly damaged. Hydroxyprol ine content detection: there was no significant difference between group A and groups C1, C2, C3, T1 and T2 (P gt; 0.05); significant difference was evident between group A and groups C4, T3 and T4 (P lt; 0.05); the difference between group C4 and groups T3and T4 was significant (P lt; 0.05); no significant difference was evident between group T3 and group T4 (P gt; 0.05). The optimal decellularization condition was 4 , 1.0% SDS and 72 hours according to the results of HE staining and hydroxyproline content detection. Gross observation: the muscle bundles of the experimental group were pall id, half-transparent and fluffier comparing with the control group. Masson staining observation: the collagen fibers of the experimental group had a good continuity, and were fluffier comparing with control group. Biomechanics test: the maximum breaking load of the experimental group and the control group was (1.38 ± 0.35) N and (1.98 ± 0.77) N, respectively; the maximum extension displacement of the experimental group and the control group was (3.19 ± 3.23) mm and (3.56 ± 2.17) mm, respectively; there were no significant differences between two groups (P gt; 0.05). Conclusion Acellular matrix with intact ECM and complete removal of muscle fibers can be obtained by oscillatory treatment of rat skeletal muscle at 4℃ with 1% SDS for 72 hours.

          Release date:2016-09-01 09:07 Export PDF Favorites Scan
        • Study on the Physical Characteristics of Decellularized Porcine Pulmonary Valved Conduits Crosslinked by Carbodiimide

          Abstract: Objective To observe the physical characteristics of decellularized porcine pulmonary valved conduits crosslinked by carbodiimide (EDC). Methods [WTBZ]Twenty porcine pulmonary valved arteries were mobilized on relative asepsis condition. They were cut longitudinally into three samples at the junction position of pulmonary valve (every sample was comprised of a part of the pulmonary conduit wall and the corresponding valve). The samples were randomly divided into three groups by lotdrawing method. Group A was the control group which was made up of the fresh porcine arterial valved conduit samples without any other treatments. Group B was comprised of porcine pulmonary samples decellularized by trypsindetergent digestion. Group Cincluded the decellularized porcine pulmonary samples crosslinked by EDC. We observed the water content, thickness, tensile strength, and shrinkage temperature of all the samples, based on which the physical characeteristics of these samples were analyzed. Results [WTBZ]Complete cellfree-pulmonary conduit matrix was achieved by trypsindetergent digestion. Compared with group A, in group B, the water content of pulmonary wall was significantly higher (P=0.000), while the water content of pulmonary valve was not significantly different; the thickness of pulmonary wall and valve (P=0.000,0.000) and tensile strength of pulmonary wall and valve (Plt;0.01) was significantly lower, while shrinkage temperature was not significantly different. Compared with group B, in group C, the water content of pulmonary wall was significantly lower (P=0.000), while the water content of pulmonary valve, and the thickness of pulmonary wall and valve were not significantly different; the tensile strength of pulmonary wall (Plt;0.01) and valve (P=0.000), and the shrinkage temperature of them (P=0.000, 0.000) were significantly higher. Compared with group A, in group C, the water content of pulmonary wall and valve, and the tensile strength of them were not statistically different, while the thickness of pulmonary wall and valve was significantly lower (P=0.000, 0.000), and the shrinkage temperature of them was significantly higher (P=0.000, 0.000). Conclusion [WTBZ]EDC crosslinking method is available for treating decellularized porcine pulmonary valved conduits in order to enhance its tensile strength, and decrease water content of pulmonary wall.

          Release date:2016-08-30 05:57 Export PDF Favorites Scan
        • SIMPLIFIED PREPARATION AND RELATIVE EVALUATION OF DECELLULARIZED PORCINE AORTICSCAFFOLD

          【Abstract】 Objective To investigate the feasibil ity of applying enzymatic method to prepare decellularizedporcine aorta and to evaluate its biomechanical properties, immunogenicity and cell compatibil ity. Methods 0.1% trypsin- 0.01% EDTA was appl ied to extract cells from porcine aorta under 37 continuously vibrating condition and its histology and microstructure were observed. The thickness, stress-strain curve, ultimate tension stress (UTS) and strain of failure (SOF) were compared before and after decellularization for 48, 96 and 120 hours under uniaxial tensile tests, respectively. The histological change was observed at 1, 3 and 6 weeks after the decellularized tissue was implanted subcutaneously in 3 dogs. According to the HE stains and a semi-quantitative Wakitani grading method, gross changes, category and amounts of infiltrated cells and neo-capillaries were compared between pre- and post-decellularization of porcine aortae. Endothel ial cells from canine external jugular vein were seeded onto the decellularized patches to observe the cell compatibil ity. Results Microscopy and electron microscopies examination identified that cell components was completely removed from the fresh porcine aorta and Masson’ strichrome showed that the structure of matrix (fibrins) was maintained intact at 96 hours using the decellularization method. There were no significant differences in the thickness, UTS and SOF between before and after decellularization (P gt; 0.05). However, The UTS values showed a decrease tendency and SOF showed an increase tendency. The stress-strain curve also verified a decrease tendency in mechanical intensity and an increase one in ductil ity after decellularization. After implanting the acellularized matrix subcutaneously in canine, moderately lymphocyte infiltration was seen at the 1st week and the infiltration was replaced by fibroblasts accompanied by neocapillary formation at the 6th week. A semi-quantity histological evaluation showed that there were differences in gross observation, category and the numbers of the infiltrated cells between decellularized and non-decellularized tissues(P lt; 0.05). A cell monolayer was identified by HE staining and scanning electron microscopywhen the endothel ial cells were seeded onto the inner luminal surface of the scaffold, al igned at the same direction on the whole. Conclusion The decellularized porcine aortic scaffold, prepared by trypsin-EDTA extraction under continuously vibrating condition, could meet the requirements of tissue-engineering graft in biomechanical properties, immunogenicity and cell compatibil ity.

          Release date:2016-09-01 09:10 Export PDF Favorites Scan
        • Construction of tissue engineered adipose by human adipose tissue derived extracellular vesicle combined with decellularized adipose tissues scaffold

          ObjectiveTo explore the possibility of constructing tissue engineered adipose by adipose tissue derived extracellular vesicles (hAT-EV) combined with decellularized adipose tissue (DAT) scaffolds, and to provide a new therapy for soft tissue defects.MethodsThe adipose tissue voluntarily donated by the liposuction patient was divided into two parts, one of them was decellularized and observed by HE and Masson staining and scanning electron microscope (SEM). Immunohistochemical staining and Western blot detection for collagen type Ⅰ and Ⅳ and laminin were also employed. Another one was incubated with exosome-removed complete medium for 48 hours, then centrifuged to collect the medium and to obtain hAT-EV via ultracentrifugation. The morphology of hAT-EV was observed by transmission electron microscopy; the nanoparticle tracking analyzer (NanoSight) was used to analyze the size distribution; Western blot was used to analyse membrane surface protein of hAT-EV. Adipose derived stem cells (ADSCs) were co-cultured with PKH26 fluorescently labeled hAT-EV, confocal fluorescence microscopy was used to observe the uptake of hAT-EV by ADSCs. Oil red O staining was used to evaluate adipogenic differentiation after hAT-EV and ADSCs co-cultured for 15 days. The DAT was scissored and then injected into the bilateral backs of 8 C57 mice (6-week-old). In experimental group, 0.2 mL hAT-EV was injected weekly, and 0.2 mL PBS was injected weekly in control group. After 12 weeks, the mice were sacrificed, and the new fat organisms on both sides were weighed. The amount of new fat was evaluated by HE and peri-lipoprotein immunofluorescence staining to evaluate the ability of hAT-EV to induce adipogenesis in vivo.ResultsAfter acellularization of adipose tissue, HE and Masson staining showed that DAT was mainly composed of loosely arranged collagen with no nucleus; SEM showed that no cells and cell fragments were found in DAT, and thick fibrous collagen bundles could be seen; immunohistochemical staining and Western blot detection showed that collagen type Ⅰ and Ⅳ and laminin were retained in DAT. It was found that hAT-EV exhibited a spherical shape of double-layer envelope, with high expressions of CD63, apoptosis-inducible factor 6 interacting protein antibody, tumor susceptibility gene 101, and the particle size of 97.9% hAT-EV ranged from 32.67 nmto 220.20 nm with a peak at 91.28 nm. Confocal fluorescence microscopy and oil red O staining showed that hAT-EV was absorbed by ADSCs and induced adipogenic differentiation. In vivo experiments showed that the wet weight of fat new organisms in the experimental group was significantly higher than that in the control group (t=2.278, P=0.048). HE staining showed that the structure of lipid droplets in the experimental group was more than that in the control group, and the collagen content in the control group was higher than that in the experimental group. The proportion of new fat in the experimental group was significantly higher than that in the control group ( t=4.648, P=0.017).ConclusionDAT carrying hAT-EV can be used as a new method to induce adipose tissue regeneration and has a potential application prospect in the repair of soft tissue defects.

          Release date:2020-02-20 05:18 Export PDF Favorites Scan
        • Immunogenicity of Two Decellular Human Homograf Valves: A Comparative Study

          ObjectiveExtracting the endothelial cells or all endothelial cells and interstitial cells from the cryopreserved homograft valves (HV), to evaluate the immunogenicity of this two kinds of decellular HV. MethodsFor extracting the endothelial cells, the leaflet and wall of the HV were decellularized by a 4-step detergent-enzymatic extraction method involving the 1% triton in combination with RNase (1μg/ml) and DNase (10μg/ml). For extracting the endothelial cells and interstitial cells, the leaflet and wall of the HV were decellularized by a 3-step detergent-enzymatic extraction method involving the 1% deoxycholic acid (DOA) in combination with RNase (20μg/ml) and DNase (200μg/ml). HLA-DR antigen expression was detected by using immunohistochemical techniques. The valve and wall of the HV were transplanted subcutaneously in the mice for 8 weeks, and the histology, calcium assay and calcium content were examined. ResultsFor the staining of the HLA-DR antigens, the immunogenic potential of the HV with extracting all endothelial cells and interstitial cells or only the endothelial cells was lower than cryopreserved HV, but it more obviously decreased for the HV with extracting all endothelial cells and interstitial cells. After 8 weeks embedded in the mice, the histological signs of the inflammatory reactions and the calcification extent to the cryopreserved HV and the HV with only extracting endothelial cells were stronger than the HV with extracting all endothelial cells and interstitial cells predominantly. And calcification extent or the inflammatory reactions to the wall of the HV were more severe than those of the leaflet. ConclusionsThe immunogenicity of the HV with extracting all endothelial cells and interstitial cells is much less than HV with only extracting endothelial cells. The histological signs of the inflammatory reactions and the calcification extent in vivo experiments is obviously decreased. For the HV with only extracting endothelial cells, though the histological signs of the inflammatory reactions slightly decrease, the calcification extent in vivo experiments is more severe, especially for the wall. The interstitial cells may be the important factor for the donor-reactive immune responses that is related to the graft calcification or destruction after implantation.

          Release date: Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品