1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Deep learning" 79 results
        • Developments of ex vivo cardiac electrical mapping and intelligent labeling of atrial fibrillation substrates

          Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.

          Release date:2024-04-24 09:40 Export PDF Favorites Scan
        • Machine learning-based diagnostic test accuracy (1): study design

          With the development of artificial intelligence, machine learning has been widely used in diagnosis of diseases. It is crucial to conduct diagnostic test accuracy studies and evaluate the performance of models reasonably to improve the accuracy of diagnosis. For machine learning-based diagnostic test accuracy studies, this paper introduces the principles of study design in the aspects of target conditions, selection of participants, diagnostic tests, reference standards and ethics.

          Release date:2023-06-20 01:48 Export PDF Favorites Scan
        • Research and implementation of intelligent diagnostic system for temporomandibular joint disorder

          Temporomandibular joint disorder (TMD) is a common oral and maxillofacial disease, which is difficult to detect due to its subtle early symptoms. In this study, a TMD intelligent diagnostic system implemented on edge computing devices was proposed, which can achieve rapid detection of TMD in clinical diagnosis and facilitate its early-stage clinical intervention. The proposed system first automatically segments the important components of the temporomandibular joint, followed by quantitative measurement of the joint gap area, and finally predicts the existence of TMD according to the measurements. In terms of segmentation, this study employs semi-supervised learning to achieve the accurate segmentation of temporomandibular joint, with an average Dice coefficient (DC) of 0.846. A 3D region extraction algorithm for the temporomandibular joint gap area is also developed, based on which an automatic TMD diagnosis model is proposed, with an accuracy of 83.87%. In summary, the intelligent TMD diagnosis system developed in this paper can be deployed at edge computing devices within a local area network, which is able to achieve rapid detecting and intelligent diagnosis of TMD with privacy guarantee.

          Release date:2024-10-22 02:39 Export PDF Favorites Scan
        • Identification of kidney stone types by deep learning integrated with radiomics features

          Currently, the types of kidney stones before surgery are mainly identified by human beings, which directly leads to the problems of low classification accuracy and inconsistent diagnostic results due to the reliance on human knowledge. To address this issue, this paper proposes a framework for identifying types of kidney stones based on the combination of radiomics and deep learning, aiming to achieve automated preoperative classification of kidney stones with high accuracy. Firstly, radiomics methods are employed to extract radiomics features released from the shallow layers of a three-dimensional (3D) convolutional neural network, which are then fused with the deep features of the convolutional neural network. Subsequently, the fused features are subjected to regularization, least absolute shrinkage and selection operator (LASSO) processing. Finally, a light gradient boosting machine (LightGBM) is utilized for the identification of infectious and non-infectious kidney stones. The experimental results indicate that the proposed framework achieves an accuracy rate of 84.5% for preoperative identification of kidney stone types. This framework can effectively distinguish between infectious and non-infectious kidney stones, providing valuable assistance in the formulation of preoperative treatment plans and the rehabilitation of patients after surgery.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        • Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network

          The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95.98%, 98.03% and 95.79% respectively. In this research, the deep learning method was introduced for the analysis of single-lead ECG of HCM patients, which could not only overcome the technical limitations of conventional detection methods based on multi-lead ECG, but also has important application value for assisting doctor in fast and convenient large-scale HCM preliminary screening.

          Release date:2022-06-28 04:35 Export PDF Favorites Scan
        • Recurrence prediction of gastric cancer based on multi-resolution feature fusion and context information

          Pathological images of gastric cancer serve as the gold standard for diagnosing this malignancy. However, the recurrence prediction task often encounters challenges such as insignificant morphological features of the lesions, insufficient fusion of multi-resolution features, and inability to leverage contextual information effectively. To address these issues, a three-stage recurrence prediction method based on pathological images of gastric cancer is proposed. In the first stage, the self-supervised learning framework SimCLR was adopted to train low-resolution patch images, aiming to diminish the interdependence among diverse tissue images and yield decoupled enhanced features. In the second stage, the obtained low-resolution enhanced features were fused with the corresponding high-resolution unenhanced features to achieve feature complementation across multiple resolutions. In the third stage, to address the position encoding difficulty caused by the large difference in the number of patch images, we performed position encoding based on multi-scale local neighborhoods and employed self-attention mechanism to obtain features with contextual information. The resulting contextual features were further combined with the local features extracted by the convolutional neural network. The evaluation results on clinically collected data showed that, compared with the best performance of traditional methods, the proposed network provided the best accuracy and area under curve (AUC), which were improved by 7.63% and 4.51%, respectively. These results have effectively validated the usefulness of this method in predicting gastric cancer recurrence.

          Release date:2024-10-22 02:39 Export PDF Favorites Scan
        • Cardiac magnetic resonance image segmentation based on lightweight network and knowledge distillation strategy

          To address the issue of a large number of network parameters and substantial floating-point operations in deep learning networks applied to image segmentation for cardiac magnetic resonance imaging (MRI), this paper proposes a lightweight dilated parallel convolution U-Net (DPU-Net) to decrease the quantity of network parameters and the number of floating-point operations. Additionally, a multi-scale adaptation vector knowledge distillation (MAVKD) training strategy is employed to extract latent knowledge from the teacher network, thereby enhancing the segmentation accuracy of DPU-Net. The proposed network adopts a distinctive way of convolutional channel variation to reduce the number of parameters and combines with residual blocks and dilated convolutions to alleviate the gradient explosion problem and spatial information loss that might be caused by the reduction of parameters. The research findings indicate that this network has achieved considerable improvements in reducing the number of parameters and enhancing the efficiency of floating-point operations. When applying this network to the public dataset of the automatic cardiac diagnosis challenge (ACDC), the dice coefficient reaches 91.26%. The research results validate the effectiveness of the proposed lightweight network and knowledge distillation strategy, providing a reliable lightweighting idea for deep learning in the field of medical image segmentation.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        • Research progress on endoscopic image diagnosis of gastric tumors based on deep learning

          Gastric tumors are neoplastic lesions that occur in the stomach, posing a great threat to human health. Gastric cancer represents the malignant form of gastric tumors, and early detection and treatment are crucial for patient recovery. Endoscopic examination is the primary method for diagnosing gastric tumors. Deep learning techniques can automatically extract features from endoscopic images and analyze them, significantly improving the detection rate of gastric cancer and serving as an important tool for auxiliary diagnosis. This paper reviews relevant literature in recent years, presenting the application of deep learning methods in the classification, object detection, and segmentation of gastric tumor endoscopic images. In addition, this paper also summarizes several computer-aided diagnosis (CAD) systems and multimodal algorithms related to gastric tumors, highlights the issues with current deep learning methods, and provides an outlook on future research directions, aiming to promote the clinical application of deep learning methods in the endoscopic diagnosis of gastric tumors.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        • Oral panorama reconstruction method based on pre-segmentation and Bezier function

          For patients with partial jaw defects, cysts and dental implants, doctors need to take panoramic X-ray films or manually draw dental arch lines to generate Panorama images in order to observe their complete dentition information during oral diagnosis. In order to solve the problems of additional burden for patients to take panoramic X-ray films and time-consuming issue for doctors to manually segment dental arch lines, this paper proposes an automatic panorama reconstruction method based on cone beam computerized tomography (CBCT). The V-network (VNet) is used to pre-segment the teeth and the background to generate the corresponding binary image, and then the Bezier curve is used to define the best dental arch curve to generate the oral panorama. In addition, this research also addressed the issues of mistakenly recognizing the teeth and jaws as dental arches, incomplete coverage of the dental arch area by the generated dental arch lines, and low robustness, providing intelligent methods for dental diagnosis and improve the work efficiency of doctors.

          Release date:2023-10-20 04:48 Export PDF Favorites Scan
        • Preliminary study on the application of artificial intelligence to identify multiple diseases in ultra-widefield fundus images

          ObjectiveTo build a small-sample ultra-widefield fundus images (UWFI) multi-disease classification artificial intelligence model, and initially explore the ability of artificial intelligence to classify UWFI multi-disease tasks. MethodsA retrospective study. From 2016 to 2021, 1 608 images from 1 123 patients who attended the Eye Center of the Renmin Hospital of Wuhan University and underwent UWFI examination were used for UWFI multi-disease classification artificial intelligence model construction. Among them, 320, 330, 319, 268, and 371 images were used for diabetic retinopathy (DR), retinal vein occlusion (RVO), pathological myopia (PM), retinal detachment (RD), and normal fundus images, respectively. 135 images from 106 patients at the Tianjin Medical University Eye Hospital were used as the external test set. EfficientNet-B7 was selected as the backbone network for classification analysis of the included UWFI images. The performance of the UWFI multi-task classification model was assessed using the receiver operating characteristic curve, area under the curve (AUC), sensitivity, specificity, and accuracy. All data were expressed using numerical values and 95% confidence intervals (CI). The datasets were trained on the network models ResNet50 and ResNet101 and tested on an external test set to compare and observe the performance of EfficientNet with the 2 models mentioned above. ResultsThe overall classification accuracy of the UWFI multi-disease classification artificial intelligence model on the internal and external test sets was 92.57% (95%CI 91.13%-92.92%) and 88.89% (95%CI 88.11%-90.02%), respectively. These were 96.62% and 92.59% for normal fundus, 95.95% and 95.56% for DR, 96.62% and 98.52% for RVO, 98.65% and 97.04% for PM, and 97.30% and 94.07% for RD, respectively. The mean AUC on the internal and external test sets was 0.993 and 0.983, respectively, with 0.994 and 0.939 for normal fundus, 0.999 and 0.995 for DR, 0.985 and 1.000 for RVO, 0.991 and 0.993 for PM and 0.995 and 0.990 for RD, respectively. EfficientNet performed better than the ResNet50 and ResNet101 models on both the internal and external test sets. ConclusionThe preliminary UWFI multi-disease classification artificial intelligence model using small samples constructed in this study is able to achieve a high accuracy rate, and the model may have some value in assisting clinical screening and diagnosis.

          Release date:2022-03-18 03:25 Export PDF Favorites Scan
        8 pages Previous 1 2 3 ... 8 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品