To investigate the processes of retinal vascular development of human fe-
tus. METHODS:Eighty-six specimens of retinas of human fetus from 13th to 38th gestational week were studied by immunohistochemieal method(ABC). RESULTS:The spindle cells of mensenchymal origin was firstly found to migrate into the retina from optic disc at 12--13 weeks ,and spreaded subsequently toward the periphery of the retina. At the same time ,the consequential processes of differentiation,proliferation,canalilization and remodelling developed into vascular plexus in ganglion cell layer (GCL). Vascular buds formed in GCL in 26th gestational week extended toward nerve fiber layer (NFL)and inner nuclear layer(INL)and developed into capillary plexuses in NFL and inner and outer margin of INL respectively. CONCLUSIONS.. Four vascular layers could be distinguished in the ratina of full term fetuses,and these layers were formed through two principal developmental processes.
(Chin J Ocul Fundus Dis,1996,12: 88- 90)
Objective To review the progress, methods and obstacles in the differentiation of embryonic stem cells(ESCs) into osteoblasts in vitro. Methods The recent literature concerned with the differentiation of ESCs into the osteoblasts was extensively reviewed and briefly summarized. Results ESCs was a good tool for derivation of obsteoblasts.Conclusion The study on the induction of ESCsinto the osteogenic lineage provides a model for analyzing the molecular processes of osteoblasts development in vivo and establishes the foundation for the use of ESCs in skeletal tissue repair.
Objective To establish a good method and culture system to isolate skin stem cell and expand it in vitro so as to lay a foundation for exploring the proliferation and differentiation mechanism of skin stem cell. Methods Skin stem cells were obtained by explant culture and identified by using alkaline phosphatase(ALP) staining and differentiating experiment in vitro. Stem cell was induced by the cocktail of conditional medium with cell growth factor (insulin like growth factor and epidermal growth factor). Results Skin stem cell colonies were derived from ear skin tissues of adult dairy goats. The colonies had some characteristics of embryonic stem cells, such as the ability to be continously passaged (Passage 5) and the morphology nest-like. They continued to be ALP positive and had the capacity of forming embryoid bodies. These cells were pluripotent and stem-like cells. In vitro these stem cell can be induced to be Follicle-like structure, Astrocyte-like cells, osteoblast-like cell. Conclusion Explant culture is a good method to isolate skin stem cell, which can be induced to be committed differentiation and trans-differentiation.
Objective To induce embryonic stem cell (ESC) to differentiate into endothel ioid cells using a simple adhesive culture method, and to provide a new cells seed source for vascular tissue engineering or cell therapy. Methods SV129-derived ESC were seeded at 2 × 104/cm2 and maintained undifferentiated on ESC culture medium in the presence of 1 000 U/mL leukaemia inhibitory factor (LIF). Embryoid body (EB) formatted when ESC cultured in suspension in the lack of LIF. At 4 days, EB was transferred to 0.1% gelatin coated dish and cultured with medium supplementary of VEGFto be induced differentiation. The characteristics of differentiated cells were determined by immunohistochemistry staining, flow cytometry (FCM), 1, 1-dioctadecyl-3, 3, 3, 3-tetramethyl indocarbocyanine-labeled acetylated low density l ipoprotein (DiIAc- LDL) takeup test, and TEM detection. Results Differentiated cells were morphologically characterized as endothel ial cells. They could takeup DiI-Ac-LDL, be stained positive by Flk-1 and CD31. The CD31 positive cells reached above 90% when measured by FCM. Furthermore, Weibel-Palade bodies were detected and tight junctions were found when differentiated cells were examined by TEM. Conclusion Using a simple adhesive culture method and by suppl ied with VEGF alone, ESCs can be induced to differentiate into endothel ioid cells. The differentiation method is simple and economic, and can provide seed cells for vascular tissue engineering or cell-therapy.
Objective To explore an optional condition to induce mouse embryonic stem cell(ESC) to differentiate into endothelial cells so as to provide seedcells for tissue engineered vascular. Methods The embryos from one pregnant 12.5days mouse was harvested to culture the mouse embryonic fibroblasts(MEF). The ESC was reanimated by common method, and used to cultured into embryoid body(EB) in vitro. The EB which was used to induce into endothelial cells was divided into two groups. The EB was cultured in the EB medium with 3ng/ml transforming growth factor β1, 50 ng/ml vascular endothelial cell growth factor and 1 μmol/L potent and selective inhibitor of activin receptorlike kinase receptors in experimental group. The EB was cultured in the EB medium in the control group. After 14 days, RTPCR and immunohistochemistry were used to detect vWF and CD34, to analyze the morphology and type of the differentiated cells fromESC. Results The primary MEF had a high proliferation activity. At the 3rdday, the fusion rate of MEF was about 90% with a fusiform shape. The cells was fusiform shape and arranged compactly with fullness of nucleus and 2-3 entoblasts. The 3rd5th generations EB was polygonal with fullness of cytoplasm and 3-4 entoblasts. ESC could maintain undifferentiated state, and the cells unit lookedlike bird nest with smooth margin; the cells was small at size and b refractivity with high rate of nuclein and rapid proliferation. At 3 days of dropculture, EB can seen grossly and at 3 days of suspension, large and transparent EBformed. EB was spread radiately with an intensive adhesion at the 2nd day. In experimental group, many round cells was differentiated around EB from the 4thday to the 7th day, and form tubular structures from the 10th day to the 14th day. The vWF and CD34 were expressed. In control group, EB could not form tubularstructures, and the vWF and CD34 were not expressed. Conclusion ESC can differentiate into endothelial cells under some conditions, and form vessellike structure under condition culture, which can provide sources of seed cells for tissue engineered vessel.
Objective To investigate the protective effect of nerve growth factor (NGF) on apoptosis of cultured human fetal retinal pigment epithelium (HFRPE) cells induced by indomethacin (IN) in vitro.Methods Subcultured HFRPE cells were treated with different concentrations of IN to establish apoptotic model. The protective effect of NGF on apoptosis of cultured HFRPE cells were assessed using an acridine orange (AO) staining method and transmission electron microscopy (TEM).Results HFRPE cells exposed by 200-600 μmol/L IN for 24 hours elicited typical apoptosis morphological changes, including condensed chromation, nuclear fragmentation and reduction of nuclear size and cell volume. There was a statistically difference in HFRPE cells with apoptosis between 200 μmol/L IN+500 μg/L NGF and 200 μmol/LIN groups ( q=3.9204,P=0.0320); there was a significant difference in HFRPE cells with apoptosis in 400 μmol/L IN+500 μg/L NGF and 400 μmol/ L IN as well (q=9.7915,P=0.0001). Conclusion NGF has an protective effect on IN-induced HFRPE cells apoptosis. (Chin J Ocul Fundus Dis,2003,19:38-41)
ObjectiveTo investigate the effects of over expression of Mash-1 gene on the differentiation of embryonic stem cells (ESC) into neural cells in vitro.
MethodsThe ESC of rats (CE3 cells) were transfected with MSCVMash- 1 (MSCV-Mash-1-CE3 group) or MSCV (MSCV-CE3 group). The expression of Mash-1 gene was detected by RT-PCR. After transfection, hanging-drop culture was used to form embryonic bodies, and then embryonic bodies were cultured with neural induction medium. The cell morphology was observed under inverted phase contrast microscopy at 7 and 21 days; the positive rates of neural stem cells marker protein (nestin) and neuron marker protein (β-tubulin Ⅲ) were measured by immunofluorescence staining after cell attachment; and the gene expressions of α-fetal protein (AFP), Brachyury, fibroblast growth factor 5 (FGF-5), Oct3/4, nestin, and β-tubulin Ⅲ were detected by real-time fluorescence quantitative PCR at 0, 1, 7, 14, and 21 days after culture. The CE3 cells were used as control (CE3 group).
ResultsCompared with MSCV-CE3 and CE3 groups, the expression of Mash-1 gene in MSCV-Mash-1-CE3 group was significantly increased. At 7 and 21 days after neural induction cultured, cells in MSCV-Mash-1-CE3 group had axons growth and showed neural stem cell-like and neuron cell-like morphology (unipolar, bipolar, and multipolar neurons), but few cells had axons growth in MSCV-CE3 and CE3 groups. The positive rates of nestin at 7 days and β-tubulin Ⅲ at 21 days in MSCV-Mash-1-CE3 group were significantly higher than those in MSCV-CE3 and CE3 groups (P<0.05). Real-time fluorescence quatitative PCR results showed that the gene expression of Brachyury was significantly decreased after 1 day (P<0.05), and the gene expressions of FGF-5 and nestin were significantly increased after 1 day (P<0.05) in MSCV-Mash- 1-CE3 group when compared with CE3 and MSCV-CE3 groups; the gene expression of β-tubulin Ⅲ was significantly increased after 7 days (P<0.05). There was no significant difference in above indexes between CE3 and MSCV-CE3 groups (P>0.05). The expressions of AFP and Oct3/4 showed no significant difference among groups at each time point (P>0.05).
ConclusionOver expression of Mash-1 gene can promote differentiation of ESC into neural cells in vitro.
ObjectiveTo study the characteristics of the human umbilical cord perivascular cells (HUCPVC) isolated from human first trimester umbilical cord perivascular layer tissues and the differentiation into islet-like cell clusters in vitro.
MethodsThe HUCPVC derived from human first trimester umbilical cord which was donated by the volunteers were isolated and subcultured. The surface markers such as stage-specific embryonic antigen 1 (SSEA-1), SSEA-3, SSEA-4, OCT-4, TRA-1-60, and TRA-1-81 were detected by immunohistochemical method. The first trimester HUCPVC were induced to embryoid bodies (EB)-like cell aggregations and islet-like cell clusters in vitro through a simple stepwise culture protocol (5 steps). The expressions of specific markers[α-fetoprotein (AFP), Nestin, and smooth muscle actin (SMA)] were measured by immunohistochemical method; and the ability of glucose-stimulated insulin secretion was analyzed.
ResultsThe first trimester HUCPVC were successfully isolated and could be passaged steadily more than 10 generations, which expressed SSEA-3, SSEA-4, OCT-4, TRA-1-61, and TRA-1-81. The first trimester HUCPVC were successfully induced into EB-like cell aggregations and islet-like cell clusters. The EB-like cell aggregations could express markers of three germ lineages:AFP, Nestin, and SMA. The islet-like cell clusters could release insulin significantly in response to elevated concentrations of glucose in vitro (t=7.444, P=0.002). The insulin contents were (23.2±5.3) mU/L and (7.0±0.5) mU/L in high and low glucose media, respectively.
ConclusionThe first trimester HUCPVC has the ability to differentiate into islet-like cell clusters which can secret insulin in vitro.
ObjectiveTo investigate the impact of L-Phenylalanine on the efficiency of retinal pigment epithelial (RPE) cell derivation from human embryonic stem cells (hESCs) and explore the underlying mechanisms.
MethodsH1 hESCs were routinely cultured with mTeSR medium and divided into control and experimental groups. When cells reached over-confluence, spontaneous differentiation was triggered using 10% KSR differentiation medium without bFGF. L-Phenylalanine (0.2 mmol/L) was supplemented in the experimental group from the 3rd week. The expression of RPE markers and Wnt signaling components in the two groups was detected by Real time-RCR, Western blot and Flow cytometry analyses. Purified hESC-RPE cells and PBS were injected into the subretinal space of sodium iodine-induced retinal degeneration rats separately. Retinal function was assessed by ERG 6 weeks after the transplantation.
ResultsOn the 7th week, much more pigment cell clumps appeared in the experimental group compared to the control group. Within these areas there were monolayer hexagonal RPE cells full of pigment granules. The experimental group showed significantly higher expression of Pax6, MITF, Tyrosinase, RPE65, Wnt3a, Lef1 and Tcf7 genes than the control group (P < 0.01). Higher expression level of MITF and RPE65 proteins and higher percentage of RPE65 (+) cells (P < 0.01) were detected in the experimental group. 6 weeks after sub-retinal transplantation of hESC-RPE cells, the amplitudes of a-b wave in the transplanted eyes were significantly higher than those in the control eyes (P < 0.01) at the stimulus intensity of 3.0 cd·s/m2.
ConclusionsL-Phenylalanine effectively promoted the differentiation of embryonic stem cells into retinal pigment epithelial cells, and its impacts on the Wnt/β-catenin signaling pathway may partially explain the underlying mechanisms. Subretinal transplantation of hESC-RPE remarkably improved the retinal functions of retinal degenerative animal models.
Diabetic retinopathy is a serious complication of diabetes and is the leading cause of blindness in people with diabetes. At present, there are many views on the pathogenesis of diabetic retinopathy, including the changes of retinal microenvironment caused by high glucose, the formation of advanced glycation end products, oxidative stress injury, inflammatory reaction and angiogenesis factor. These mechanisms produce a common pathway that leads to retinal degeneration and microvascular injury in the retina. In recent years, cell regeneration therapy plays an increasingly important role in the process of repairing diseases. Different types of stem cells have neurological and vascular protection for the retina, but the focus of the target is different. It has been reported that stem cells can regulate the retinal microenvironment and protect the retinal nerve cells by paracrine production, and can also reduce immune damage through potential immunoregulation, and can also differentiate into damaged cells by regenerative function. Combined with the above characteristics, stem cells show the potential for the repair of diabetic retinopathy, this stem cell-based regenerative therapy for clinical application provides a pre-based evident. However, in the process of stem cell transplantation, homogeneity of stem cells, cell delivery, effective homing and transplantation to damaged tissue is still a problem of cell therapy.