Objective To explore morphological recellularization level of bioprosthetic valve scaffold (BVS) and to provide researching means for fabricating tissue engineered heart valve in vitro.Methods The homograft bioprosthetic aortic tube valve was selected as BVS, which was conserved by liquid nitrogen, and its endothelial cells (ECs) were removed by 0.1% sodium dodecylsulphate (SDS). As implantation cells, the endothelial cells (ECs) differentiating from human bone marrow mesenchymal stem cells (MSCs) in vitro were implanted with high-density seeding (gt;10 5 cells/cm2) on the BVS, which was covered by fibronectin (80 μg/ml) in advance. The complex structure was statically cultured in DMEM (high glucose) with 20% FBS and VEGF (10 ng/ml) for about 20 days in vitro and stained by 0.5% AgNO3. The morphological structure was observed and photographed by stereomicroscope to detect the recellularization level. Results The ECs of the bioprosthetic valve were notonly removed completely, but also the collagen fiber and elastic fibers were reserved. The ECs differentiating from MSCs were successfully implanted on the HBS, whose recellularization levels on 7th, 14th and 20th day were 73%, 85%, and 92% respectively. Conclusion AgNO3 staining technique is effective, convenient, and economic in evaluating the recellularization level of BVS. It is an effective method in morphological observation for fabricating tissueengineered heart valve in vitro.
Objective To clarify that the vascular endothelial cell injury caused by obstructive sleep apnoea hypopnea syndrome (OSAHS) is partly mediated by miRNA-92a. Methods Serum miRNA-92a level was measured in patients who underwent polysomnography between January 2018 and December 2018. The correlation between miRNA-92a and OSAHS was analyzed. Meanwhile, endothelial cells were cultured in vitro, and morphological changes and JC-1 staining results of endothelial cells were observed after OSAHS serum stimulation, so as to further clarify the injury of endothelial cells. The changes of miRNA-92a target gene were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to further clarify the mechanism of endothelial cell injury. Results Seventy-two patients received polysomnography, including 22 cases in the non-OSAHS group, 18 in the mild OSAHS group, 10 in the moderate OSAHS group, and 22 in the severe OSAHS group. Serum miRNA-92a level was significantly increased in the OSAHS patients, and it also increased with the aggravation of OSAHS severity. OSAHS serum significantly damaged endothelial cells. Endothelial cells were swollen, disordered arrangement, and unclear boundaries. JC-1 staining showed that green fluorescence was significantly enhanced compared with the control group. RT-PCR and Western blot showed that the expressions of Krüppel-like factor-2 (KLF-2), Krüppel-like factor-4 (KLF-4) and endothelial nitric oxide synthase (eNOS) were significantly decreased under OSAHS serum stimulation. Conclusion Serum miRNA-92a of OSAHS patients is significantly increased, and reduces the expression of target genes KLF-2, KLF-4 and eNOS, affects the mitochondrial function of endothelial cells, and injures endothelial cells.
Objective To study the feasibility of transplanting autologous venous endothelial cells, as the liner, to the allogenic vein and to investigate the patency rate after such transplantation. Methods Autologous endothelial cells were gained after the administration of 0.2% collagenase and the centrifugalization of the enzyme liquid. The cells were not cultivated in a 60 ml plastic culture until the presence of the second generation. The cultivated cells were confirmed as endothelial cells by factor Ⅷ related antigen. The multiplied cells were lined in vitro onto the luminal surface of allogenic vein that was disposed by freeze-drying and radiation. The orthotopic transplantation of autologous venous endothelial cells was performed after the 9-day incubation. Results (9.47±0.35)×106 endothelial cells were obtained after the cultivation. Three hours after cell seeding, the luminal surface of allogenic vein was covered with vast endothelial cells but still had not formed an intact endomembrane. On day 9, the luminal surface was covered with a continuous endothelial monolayer and the arrangement and the shape of the cells all showed the perfect condition of endothelial cells. Eight weeks later, all the transplanted veins kept unobstructed. Conclusion The approach of lining allogenic vein with autologous endothelial cells in vitro may keep the vein unobstructed in the long term.
ObjectiveTo construct the connective tissue growth factor (CTGF) recombinant interference vector (shRNA) and observe its inhibitory effect on the expression of endogenous CTGF in retinal vascular endothelial cells. Methods The human CTGF shRNA was constructed and the high-titer CTGF shRNA lentivirus particles was acquired via three-plasmid lentivirus packaging system to infect retinal vascular endothelial cells. The optimal multiplicity and onset time of lentivirus infection were identified by tracing down the red florescent protein in interference vector. The cells were classified into three groups: blank control group, infection control group and CTGF knockdown group. The differences in cells migrating ability was observed through Transwell allay. The mRNA and protein expression of CTGF, fibronectin, α-smooth muscle actin (α-SMA) and collagen Ⅰ (Col Ⅰ) were quantified through real-time PCR testing and Western blot system. Data between the three groups were examined via one-way analysis of variance. ResultsThe result showed that an optimal multiplicity of 20 and onset time of 72 hours were the requirements to optimize lentivirus infection. Transwell allay result showed a contrast in the number of migrated cells in the CTGF knockdown group and that in the blank control group and infection control group (F=20.64, P=0.002). Real-time PCR testing showed a contrast in related gene expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the CTGF knocked-down group and that in the blank control group and infection control group (F=128.83, 124.44, 144.76, 1 374.44; P=0.000, 0.000, 0.000, 0.000). Western blot system showed the statistical significance of the contrasted number of related protein expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the knockdown group and that in the blank control group (F=22.55, 41.60, 25.73, 161.68; P=0.002, 0.000, 0.001, 0.000). ConclusionThe success in producing CTGF shRNA lentivirus particle suggests that CTGF shRNA lentivirus can effectively knock down CTGF expression.
ObjectiveTo study the early functional change of sinusoid endothelial cell after liver transplantation
in rat, and to investigate the endothelia protective effect of prostaglandin E1(PGE1). MethodsRat orthotopic liver
transplantation model was performed in “twocuff method”, grouped as follows: group A served as normal rat blank
control, group B as operative control with normal donor, group C as experimental control with shock donor, and group
D as experimental group with shock donor and PGE1 administration (n=8 in each group). Transplanted groups (referring
to recipients without specific definition) were sacrificed 6 h after operation for blood taken to detect serum liver
enzymes (ALT, LDH), malondialdehyde (MDA), nitric oxide (NO) and plasm endothelin (ET). Liver tissue was resected at
the same time for standard pathologic examination. Comparison of the difference the results was made between groups.
ResultsCold preservation time and anhepatic phase were similar in each group, (2±0.5) h and (15±3) min
respectively. All survived 6 h after transplantation (8/8) in group B and D with a survival rate of 100%, only 5
survived 6 h after transplantation in group C (5/8) with a survival rate of 62.5%. Comparing with group C, blood
ALT, LDH, MDA, ET decreased and NO increased significantly in group D (Plt;0.05). Marked histologic structural damage
was observed in group C, while normal light microscope appearance was better preserved in group C and D.
ConclusionMarked sinusoid endothelia injury occurs during liver transplantation. Concentration of serum NO and plasm
ET well presents its function. PGE1 relieves endothelia injury by improving hemodynamics and stabilizing sinusoid
endothelial cell plasma membrane.
Objective The observe the effects of interferon-inducible protein-10 (IP-10) on proliferation, migration and capillary tube formation of human retinal vascular endothelial cells (HREC) and human umbilical vein endothelial cells (HUVEC). Methods The chemokine receptor (CXCR3) mRNA of HREC and HUVEC were quantified by reverse transcriptase polymerase chain reaction (RT-PCR). In the presence of the different concentrations of IP-10, the difference in proliferation capacity of HREC and HUVEC were analyzed by cell counting kit-8 (CCK-8) methods. Wound scratch assay and threedimensional in vitro matrigel assay were used for measuring migration and capillary tube formation of HREC and HUVEC, respectively. Results RT-PCR revealed both HREC and HUVEC expressed CXCR3. The proliferation of HREC in the presence of IP-10 was inhibited in a dosagedependent manner (F=6.202,P<0.05), while IP-10 showed no effect on the inhibitory rate of proliferation of HUVEC (F=1.183,P>0.05). Wound scratch assay showed a significant reduction in the migrated distance of HREC and HUVEC under 10 ng/ml or 100 ng/ml IP-10 stimulation (F=25.373, 23.858; P<0.05). There was no effect on the number of intact tubules formed by HREC in the presence of 10 ng/ml or 100 ng/ml IP-10. The number of intact tubules formed by HREC in the presence of 1000 ng/ml IP-10 was remarkably smaller. The difference of number of intact tubules formed by HREC among 10, 100, 1000 ng/ml IP-10 and nonintervention group was statistically significant (F=5.359,P<0.05). Conclusion IP-10 can inhibit the proliferation, migration and capillary tube formation ability of HREC and the migration of HUVEC.
ObjectiveTo explore the endothelial cells from human peripheral blood and islet of rat co-transplantation under the renal capsule of diabetic nude mice to improve the survival and function of transplanted islet.
MethodsThe endothelial cells from human peripheral blood(5×105)and freshly isolated rat islet cells were co-transplanted under the renal capsule of diabetic nude mice model, then the fasting blood glucose, body weight, peripheral blood C-peptide level, and intraperitoneal glucose tolerance test(IPGTT) were measured to evaluated the islet graft survival and function.
ResultsCompared with the control group, the fasting blood glucose level significantly decreased(P < 0.01), peripheral blood C-peptide level rised(P < 0.01), and body weight increased(P < 0.01) of receptor nude mice in experience group, the IPGTT also improved.
ConclusionThe endothelial cells from human peripheral blood and islet of rat co-transplan-tation can obviously improve the survival and function of transplanted islet of nude mice.
ObjectiveTo observe RNA-Seq analysis of gene expression profiling in human retinal vascular endothelial cells after anti-vascular endothecial growth factor (VEGF) treatment.MethodsCultured the retinal vascular endothelial cells in vitro and logarithmic growth phase cells were used for experiments. The cells were divided into VEGF group and VEGF combined with anti-VEGF drugs group. The VEGF group cells were treated with 50 ng/ml VEGF for 72 h to simulate the high VEGF survival conditions of vascular endothelial cells in diabetic retinopathy. VEGF combined with anti-VEGF drug group cells was treated with 50 ng/ml VEGF and 2.5 μg/ml anti-VEGF drugs for 72 h to imitate the microenvironment of cells following the anti-VEGF drugs treatment, and whole transcriptome sequencing approach was applied to the above two groups of cells through RNA-Seq. Now with biological big data obtained as a basis, to analyze the differentially expressed genes (DEGs). And through enrichment analysis to explain the differential functions of DEGs and their signal pathways.ResultsThe gene expression profiles of the two groups of cells were obtained. Through analysis, 328 DEGs were found, including 194 upregulated and 133 downregulated ones. The functions of DEGs were influenced by regulations over molecular biological process, cellular energy metabolism and protein synthesis, etc. Among these genes, SI,PRX and HPGD were related to protein synthesis, BIRCT to cellular apoptosis, and ABLIM1 and CRB2 to retinal development, and ABCG1, ABCA9 and ABCA12 were associated with the cholesterol of macrophage and the transfer of phospholipid. GO enrichment analysis showed that DEGs mainly act in three ways: regulating biological behavior, organizing cellular component and performing molecular function. Pathway enrichment analysis showed that gene expressions of the two cell groups were differentiated in ECM receptor pathway, and Notch, mitogen-activated protein kinase, transforming growth factor (TGF)-β and Wnt signal pathways. Among them, the gene expression in TGF-β signal pathway attracts most attention, where the DEGs, such as CAMK2B, COL3A1, CYGB, PTGER2 and HS6ST2, among others, were closely related to fibrosis process.ConclusionThe anti-VEGF drugs may enhance the expression of CAMK2B, COL3A1, CYGB, PTGER2 and others genes related to TGF-β signal pathway and aggravate retinal fibrosis disease.
ObjectiveTo observe the effect of pyrimidine bundle-binding protein-associated splicing factors (PSF) on the function of hypoxia-induced human retinal microvascular endothelial cells (hRMECs).MethodsA three-plasmid system was used to construct lentivirus (LV)-PSF. After LV-PSF infected hRMECs in vitro, the infection efficiency was measured by flow cytometry. Real-time quantitative PCR (RT-PCR) was used to detect the expression of PSF mRNA in hRMECs infected with LV-PSF. The experiment was divided into two parts, in vivo and in vitro. In vivo experiments: 20 healthy C57B/L6 mice at the age of postnatal 7 were randomly divided into normal group, oxygen-induced retinopathy (OIR) group, OIR+LV-Vec group, and OIR+LV-PSF group, each group has five mice. Mice in 3 groups were constructed with OIR models except the normal group and the mice in OIR group were not treated. The mice in the OIR + LV-Vec group and the OIR+LV-PSF group were injected with an empty vector (LV-Vec) or LV-PSF in the vitreous cavity, respectively. The effect of LV-PSF on the formation of retinal neovascularization (RNV) was observed then. In vitro experiments: hRMECs were divided into normal group, hypoxia group, vector group, and PSF high expression group. HRMECs in the normal group were cultured in vitro; hRMECs in the hypoxic group were restored to normal culture conditions for 3 h after 3 h of hypoxia stimulation; hRMECs in the vector group and PSF high expression group were infected with LV-Vec and LV-PSF for 48 h, and hRMECs were returned to normal culture conditions for 24 h with hypoxia stimulation for 3 h. The effect of PSF on cell proliferation was observed by MTT colorimetry. Cell scratch test and Transwell migration experiment were used to observe the effect of PSF on cell migration ability under hypoxia stimulation. RT-PCR was used to observe the mRNA expression of HIF-1α, VEGF and PSF in each group of cells.ResultsThe LV-PSF of stably expressing PSF was successfully constructed. The infection efficiency was 97% determined by flow cytometry. The level of PSF mRNA in hRMECs infected with LV-PSF was significantly increased and detected by RT-PCR. In vivo experiments: The RNV area of the mice in the OIR group and the OIR + LV-Vec group was significantly increased compared to the normal group (t=18.31, 43.71), and the RNV area of the mice in the OIR + LV-PSF group was smaller than that in the OIR group (t=11.30) and OIR + The LV-Vec group (t=15.47), and the differences were statistically significant (P<0.05). In vitro experiments: MTT colorimetry results showed that the proliferative capacity of hRMECs in the hypoxic group was significantly enhanced compared with the normal group (t=2.57), and the proliferative capacity of hRMECs in the PSF high expression group was significantly lower than that of the normal, hypoxic, and vector groups (t=5.26, 5.46, 3.73), the differences were statistically significant (P<0.05). The results of cell scratch test showed that the hRMECs could be stimulated by the hypoxia stimulation for 3 hours to restore the normal condition for 24 hours or 48 hours (t=8.35, 13.84; P<0.05). Compared with the vector group, cell migration rate in the PSF-high expression group was not significant (t=10.99, 18.27, 9.75, 8.93, 26.94, 7.01; P<0.05). Transwell experiments showed that the number of cells stained on the microporous membrane was higher in the normal group and the vector groups, while the number of cells stained in the PSF high expression group was significantly reduced (t=9.33, 6.15; P<0.05). The results of RT-PCR showed that the mRNA expression of HIF-1α and VEGF in hRMECs in the hypoxic and vector groups increased significantly compared with the normal group (t=15.23, 21.09; P<0.05), but no change in the mRNA expression of PSF (t=0.12, 2.15; P>0.05); compared with the hypoxia group and the vector group, the HIF-1α and VEGF mRNA expression in hRMECs in the PSF high expression group were significantly decreased (t=10.18, 13.10; P<0.05), but the PSF mRNA expression increased (t=65.00, 85.79; P<0.05).ConclusionPSF can reduce the RNV area in OIR model mice. PSF may inhibit hypoxia-induced proliferation and migration of hRMECs through the HIF-1α/VEGF signaling pathway.
ObjectiveTo observe the immunological regulation effects of human umbilical cord mesenchymal stem cells (hUCMSC) on glucose-damaged rhesus retinal vascular endothelial cells (RF/6A).
MethodshUCMSC and RF/6A were co-culture according to 1:1 ratio in the co-culture system (Transwell plates), hUCMSC cells were added to upper chamber, while the lower chamber containing 25mmol/L glucose and RF/6A. There were three groups including RF/6A blank control group, high glucose treated RF/6A group, and high glucose treated RF/6A with hUCMSC co-culture group. MTT was used to measure the RF/6A cell viability. Western blot was used to to detect protein level of Foxp3. Enzyme-linked immunosorbent assay (ELISA) was used to detect the concentration of interleukin (IL)-17.
ResultsMTT assay revealed that at the first day, the survival rate of the three groups had no significant difference (F=0.030, P > 0.05). On day 3 and day 7, the cell viability of the high glucose group was significantly lower than that of the control group (t=36.072, 27.890; P < 0.05), the cell viability of the high glucose treated RF/6A with hUCMSC co-culture group was higher than that of high glucose group (t=36.072, 19.650; P < 0.05).Western blot analysis showed that Foxp3 in high glucose RF/6A group was significantly lower than that in the control group at day 7 after culture (t=7.826, P < 0.05) and high glucose RF/6A with hUCMSC group (t=19.936, P < 0.05). ELISA showed that IL-17 in the high glucose group, high glucose with hUCMSC co-culture group was significantly higher than that of the control group (F=1 267.503, P < 0.05), while IL-17 in the hUCMSC co-culture group was significantly lower than that in high glucose group (t=17.386, P < 0.05).
ConclusionhUCMSC can regulate the expression of Foxp3 and IL-17 to increase the proliferative ability of RF/6A, which was suppressed by high glucose.