1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Author
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Author "FAN Xue" 1 results
        • Constructing an intelligent ultrasound diagnosis system for breast nodules in patients with abnormal thyroid function using deep learning algorithms

          ObjectiveTo construct an intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction using deep learning algorithms. Methods We collected breast ultrasound images of 178 patients with thyroid dysfunction (969 images) from the ultrasound database of the First Affiliated Hospital of Xinjiang Medical University from January 2023 to February 2024, which served as the training set. The deep learning algorithm was used to construct an intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction. In addition, we collected breast ultrasound images of 81 patients with thyroid dysfunction (445 images) from the ultrasound database of the First Affiliated Hospital of Xinjiang Medical University from March 2024 to January 2025, which served as the validation set. The above system was used as validation set to diagnose whether patients with thyroid dysfunction had breast nodules, and the diagnostic efficacy of imaging physicians’ diagnosis and the intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction was analyzed. The consistency between the diagnosis of ultrasound physicians, intelligent ultrasound diagnosis system and the “gold standard” was tested by Kappa test. ResultsThere was no statistically significant difference in age, type of thyroid dysfunction, disease duration, number of breast nodules, and other clinical data between the training set and the validation set (P>0.05). The time required for the training set intelligent ultrasound diagnostic system to diagnose a single breast ultrasound image was (0.04±0.01) min, which was shorter than that of an ultrasound physicians [(12.36±2.58) min], t=63.709, P<0.001. The sensitivity, specificity, accuracy, and area under the curve (AUC) of detecting breast nodules in patients with thyroid dysfunction using an intelligent ultrasound diagnostic system were 97.87% (46/47), 100% (34/34), 98.77% (80/81), and 0.997 [95%CI: (0.951, 1.00)], respectively. The sensitivity, specificity, accuracy, and AUC of detecting breast nodules by ultrasound physicians were 89.36% (42/47), 91.18% (31/34), 90.12% (73/81), and 0.904 [95%CI: (0.818, 0.958)], respectively. The AUC of the intelligent ultrasound diagnosis system was higher than that of the ultrasound physician (Z=2.673, P=0.008). The detection results of breast nodules in patients with thyroid dysfunction diagnosed by ultrasound physicians were generally consistent with the “gold standard” (Kappa value=0.799, P<0.001), while the intelligent ultrasound diagnosis system was in good agreement with the “gold standard” (Kappa value=0.975, P<0.001). The confusion matrix results showed that the number of false positives was 3 and 0 for the ultrasound department physicians and the intelligent ultrasound diagnostic system, respectively, while the number of false negatives was 5 and 1. The calibration curve results indicated a high consistency between the diagnostic probability and the actual probability of the intelligent ultrasound diagnostic system, with the calibration curve fitting well with the ideal curve (Hosmer-Lemeshow test: χ2=1.246, P=0.997). ConclusionThe intelligent ultrasound diagnosis system for breast nodules in patients with thyroid dysfunction constructed by deep learning algorithm has good diagnostic efficacy, which can help ultrasound physicians improve screening efficiency and accuracy.

          Release date: Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品