The aging population and the increasing prevalence of chronic diseases in the elderly have brought a significant economic burden to families and society. The non-invasive wearable sensing system can continuously and real-time monitor important physiological signs of the human body and evaluate health status. In addition, it can provide efficient and convenient information feedback, thereby reducing the health risks caused by chronic diseases in the elderly. A wearable system for detecting physiological and behavioral signals was developed in this study. We explored the design of flexible wearable sensing technology and its application in sensing systems. The wearable system included smart hats, smart clothes, smart gloves, and smart insoles, achieving long-term continuous monitoring of physiological and motion signals. The performance of the system was verified, and the new sensing system was compared with commercial equipment. The evaluation results demonstrated that the proposed system presented a comparable performance with the existing system. In summary, the proposed flexible sensor system provides an accurate, detachable, expandable, user-friendly and comfortable solution for physiological and motion signal monitoring. It is expected to be used in remote healthcare monitoring and provide personalized information monitoring, disease prediction, and diagnosis for doctors/patients.
With the intensification of global aging trends and the continuous rise in the incidence of chronic diseases, the demand for health monitoring and early intervention has become increasingly urgent. Owing to their non-invasive nature, portability, and comfort, flexible wearable sensors have emerged as a key technology driving the development of personalized healthcare. Starting from specific application scenarios in health monitoring, this article systematically reviews recent research advances in flexible sensors within the healthcare field. Firstly, it outlines the design fundamentals of flexible sensors. This is followed by a focused analysis of their specific applications in monitoring vital signs, biochemical markers, as well as motion and neural activities, along with an in-depth exploration of the clinical significance, technical challenges, and targeted solutions in different scenarios. Finally, the current technical bottlenecks and clinical challenges are summarized, and an outlook on the future development of health monitoring systems is provided. This review aims to provide a systematic reference for the deep integration of flexible electronics technology and medicine.