1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Grayscale image" 1 results
        • Gesture accuracy recognition based on grayscale image of surface electromyogram signal and multi-view convolutional neural network

          This study aims to address the limitations in gesture recognition caused by the susceptibility of temporal and frequency domain feature extraction from surface electromyography signals, as well as the low recognition rates of conventional classifiers. A novel gesture recognition approach was proposed, which transformed surface electromyography signals into grayscale images and employed convolutional neural networks as classifiers. The method began by segmenting the active portions of the surface electromyography signals using an energy threshold approach. Temporal voltage values were then processed through linear scaling and power transformations to generate grayscale images for convolutional neural network input. Subsequently, a multi-view convolutional neural network model was constructed, utilizing asymmetric convolutional kernels of sizes 1 × n and 3 × n within the same layer to enhance the representation capability of surface electromyography signals. Experimental results showed that the proposed method achieved recognition accuracies of 98.11% for 13 gestures and 98.75% for 12 multi-finger movements, significantly outperforming existing machine learning approaches. The proposed gesture recognition method, based on surface electromyography grayscale images and multi-view convolutional neural networks, demonstrates simplicity and efficiency, substantially improving recognition accuracy and exhibiting strong potential for practical applications.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品