Objective To review the current condition of growth factors and their application to clinical treatment of acute and chronic wounds. Methods Data from the literature and Medline were analyzed according to their different uses in acute and chronic wounds. Their potential side-effects were studied. Results All data showed that wound healing time in acute and chronic wounds was accelerated and wound healing quality was improved after treatment with growth factors. No sideeffect was observed. Conclusion The efficacy and safety of growth factors in improving wound healing were confirmed. However, some reconsideration aboutpotential problems of growth factors must be made to apply them clinically in the future.
Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.
Objective To investigate the effect of chondroitinase ABC (ChABC) on the expression of growth associated protein 43 (GAP-43) and gl ial fibrillary acidic protein (GFAP) after spinal cord injury (SCI) in rats. Methods A total of 150 adult female SD rats, weighing 250-300 g, were randomly divided into ChABC treatment group (group A), sal ine treatment group (group B), and sham operation group (group C) with 50 rats in each group. In groups A and B, the rats were made the SCI models and were treated by subarachnoid injection of ChABC and sal ine; in group C, the rats were not treated as a control. At 1, 3, 7, 14, and 21 days after operation, the Basso, Beattie, and Bresnahan (BBB) score system was used toevaluate the motion function, and immunofluorescent histochemical staining was used to observe the expressions of GAP-43 and GFAP. Results At different time points, the BBB scores of groups A and B were significantly lower than those of group C (P lt; 0.05); there was no significant difference in BBB score between groups A and B after 1, 3, and 7 days of operation (P gt; 0.05), but the BBB score of group A was significantly higher than that of group B after 14 and 21 days of operation (P lt; 0.01). At different time points, the GAP-43 and GFAP positive neurons of groups A and B were significantly higher than those of group C (P lt; 0.05). After 14 and 21 days of operation, the GAP-43 positive neurons of group A were more than those of group B (P lt; 0.01). After 7, 14, and 21 days of operation, the GFAP positive neurons of group A were significantly less than those of group B (P lt; 0.01). Conclusion ChABC can degrade gl ial scar, improve the microenvironment of the injured region and enhance the expression of GAP-43, which promotes axonal growth and extension.
Objective To determine the effects recombinant human growth hormone (GH) and hypocaloric nutrition on postoperative convalescence, we performed a placebo-controlled randomized double-blind trial in 18 patients after elective gastrectomy or colectomy. Methods The subjects received parenteral nutrition containing 20 calories/kg per day and 1 g protein/kg per day. Daily injections of drug or placebo were given during the first postoperative week. Result The nine control subjects lost 3.3 kg (5.9% of preoperative weight) and had a cumulative nitrogen loss of 32.6 ± 4.2 g nitrogen at eight days. The patients receiving GH lost significantly less weight (1.3 kg) and nitrogen loss was 7.3 ± 3.1 g at eight days (Plt;0.001). Kinetic studies demonstrated that anabolic effects of GH were associated with increased protein synthesis, and amino acid flus studies across the forearm revealed increased uptake of amino acid nitrogen in the GH-treated patients. Body composition analysis revealed that the patients receiving GH maintained their lean body mass despite the major surgical procedure. Conclusion We conclude that the postoperative catabolic response can be modified with GH and hypocaloric nutrition. The metabolic and physiologic effects should now be studied in a larger number of patients to determine if this approach can reduce morbidity, mortality, and length of hospital stay for surgical patients.
Objective To investigate the effect of chondroitinase ABC (ChABC) on the expression of growth associated protein 43 (GAP-43) and gl ial fibrillary acidic protein (GFAP) after spinal cord injury (SCI) in rats. Methods A total of 150 adult female SD rats, weighing 250-300 g, were randomly divided into ChABC treatment group (group A), sal ine treatment group (group B), and sham operation group (group C) with 50 rats in each group. In groups A and B, the rats were made the SCI models and were treated by subarachnoid injection of ChABC and sal ine; in group C, the rats were not treated as a control. At 1, 3, 7, 14, and 21 days after operation, the Basso, Beattie, and Bresnahan (BBB) score system was used toevaluate the motion function, and immunofluorescent histochemical staining was used to observe the expressions of GAP-43 and GFAP. Results At different time points, the BBB scores of groups A and B were significantly lower than those of group C (P lt; 0.05); there was no significant difference in BBB score between groups A and B after 1, 3, and 7 days of operation (P gt; 0.05), but the BBB score of group A was significantly higher than that of group B after 14 and 21 days of operation (P lt; 0.01). At different time points, the GAP-43 and GFAP positive neurons of groups A and B were significantly higher than those of group C (P lt; 0.05). After 14 and 21 days of operation, the GAP-43 positive neurons of group A were more than those of group B (P lt; 0.01). After 7, 14, and 21 days of operation, the GFAP positive neurons of group A were significantly less than those of group B (P lt; 0.01). Conclusion ChABC can degrade gl ial scar, improve the microenvironment of the injured region and enhance the expression of GAP-43, which promotes axonal growth and extension.
Objective To determine the expression of the growth factors and the receptors related to angiogenesis in the intraocular tissues incarcerating in the sclerotomy sites. Methods Ten specimens from prolapsing intraocular tissues in sclerotomy sites during vitrectomy were obtained and serially sectioned in cryostate and were stained with a group of polyclonal antibodies against vascular endothelial growth factor(VEGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor-A(PDGF-A) and transforming growth factor-β1(TGF-β1) as well as their receptors by using a streptavidin peroxidase system. Results The tissues prolapsed from the sclerotomy sites were identified as retina(3 cases), vitreous tissues(3 cases), degenerated red blood cell components(2 cases), ciliary body(one case) and fibrous tissue(one case). All specimens expressed VEGF and bFGF as well as their receptors. PDGF-A, TGF-β1 and their receptors expressed in the most of specimens. The positive cells included retinal cells, ciliary non-pigmented epithelial cells and pigmented epithelial cells, fibrous cells and the cells in vitreous. Conclusions The intraocular tissues incarcerated in the sclerotomy entries express the growth factors and receptors related to angiogenesis. This might be one of the potential factors of developing anterior proliferative vitreoretinopathy. (Chin J Ocul Fundus Dis, 2002, 18: 34-37)
【Abstract】 Objective To explore the interventional effect of platelet lysate (PL) on osteogenic differentiation ofBMSCs by induction in rats in vitro. Methods Twenty-four clean-grade adult Wistar rats, weighing from 250 g to 300 g, maleor female, were included in this study. PL was obtained through three times of centrifugation and repeated freeze-thaw for the blood aspirated from cardiac cavities in 16 Wistar rats. ELISA assay was conducted to detect the concentration of growth factors PDGF, TGF-β1, IGF-1 and VEGF in PL. The BMSCs harvested by flushing femurs of 8 adult Wistar rats were isolated, cultivated and expanded in vitro. The cells at the 4 passage were performed for osteogenic differentiation by induction in three groups of A (5% PL of final concentration in basic induction medium), B (1% PL of final concentration in basic induction medium), and C (no presence of PL in basic induction medium as a control). The morphological changes of the cells were dynamically observed with inverted phase contrast microscope during the whole period. At different time-points, ALP staining (7 days) and ALP/TP (2, 8, 12 days) of the cells were detected to evaluate ALP activity, and the mineral formation in extracellular martrix was examined with Al izarin red staining which provided quantitative analysis of mineral deposits. Results ELISA assay showed that the content of PDGF, TGF-β1, IGF-1 and VEGF in PL reached (300 ± 30), (140 ± 25), (80 ± 35), (70 ± 20) pg/mL, respectively. Morphological observation displayed BMSCs in group A or B gradually turned from spindle-shape to square- or polygon-shape as the morphorlogical type of osteoblast-l ike cells at 7 days. The cells in group A showed slower shape changesbut higher prol iferation than that in group B or C. Moreover, at the 20 days, the cells in group A still displayed dense gro wth and produced obviously decreased amount of mineral deposits in ECM when compared with group B or C. At the 7 days, the cells ofgroup A showed smaller amount of granules positive for ALP staining in cytoplasm when compared with groups B and C, and displayed marked reduction in ALP activity assay at the 2, 8, and 10 days compared with that of groups B and C (P lt; 0.05). At the 20 days, Al izarin red staining showed the number of mineral deposits in groups A, B and C were 7.67 ± 1.10, 12.87 ± 0.81 and 15.59 ± 0.25, respectively, while the area of mineral deposits were (161 778.70 ± 44 550.80), (337 349.70 ± 56 083.24), and (415 921.70 ± 71 725.39) pixels, respectively. The number of mineral deposits and the area of mineral deposits in group A were smaller than those in groups B and C (P lt;0.05). But there was no statistically significant difference between groups B and C (P gt; 0.05). Conclusion PL is a kind of system carrying various growth factors. Exposure of PL inhibits both ALP activity and mineral formation of BMCs in a dose-dependent way under the osteogenic induction environment.
In order to investigate the inhibitory effect of salvia miltiorrhiza (SM) and tetramethyl pyrazine (TP) on scartricial fibroblast, the hypertrophic scar tissue of chest was chosen for culture of fibroblasts, and the influence of SM and TP on fibroblasts was observed, The effect of the drugs on the growth of fibroblasts, on DNA synthesis of fibroblasts and on mitosis index of fibroblasts were all determined quantitatively. The results showed: 1. SM and TP could inhibit significantly the growth of the fibroblasts, the inhibitory effect was irreversible when the concentration of the drugs reached 5 mg/ml and 500 micrograms/ml respectively; 2. SM and TP could inhibit the absorption of 3H-TdR and this effect was correlated positively to the dosage of the drugs and; 3. SM and TP could reduce the mitosis index of fibroblasts. It was concluded that SM and TP had definite depressive effect on growth of fibroblasts which was correlated positively with the concentration of drugs and duration of application. The inhibitory effect of the drugs on fibroblasts was mainly through inhibition of synthesis of DNA.
Objective To evaluate the effect of integrin-linked kinase (ILK) in the process of retinal neovascularization induced by vascular endothelial growth factor (VEGF). Methods The ILK activities of retinal choriodal endothelial cell line RF/6A were inhibited by LY294002 or siRNA knockdown. VEGF-induced changes of cell adhesion, proliferation, migration and endothelial cell tube-formation were measured then. The in-vivo effects of ILK were also assessed by intraperitoneal injection of LY294002 into an animal model of RNV. Results The cell adhesion measurements of control group, VEGF group, VEGF+LY294002 group and VEGF+siRNA group were 0.0726plusmn;0.01961, 0.1137plusmn;0.02631, 0.0837plusmn;0.01503 and 0.0853plusmn;0.02454 , respectively. The difference was statistically significant between VEGF group and control group(t =4.211,Plt;0.01), and between (VEGF+LY294002) group or (VEGF+siRNA) group and control group (t =3.074, 2.91,Plt;0.01). The cell proliferation results of control group, VEGF group and VEGF+LY294002 group were 0.4162plusmn;0.1392, 0.6412plusmn;0.2420, 0.4476plusmn;0.1834 , respectively. The difference was statistically significant between VEGF group and control group(t=2.608,Plt;0.05), and between (VEGF+LY294002) group and VEGF group(t=2.244,Plt;0.05).The cell migration results of control group, VEGF group and VEGF+LY294002 group were 83.66plusmn;30.283, 248plusmn;74.748, 138.5plusmn;38.167, respectively. The difference was statistically significant between VEGF group and control group(t=5.436,Plt;0.01), and between (VEGF+LY294002) group and VEGF group(t=3.682,Plt;0.01). There was no obvious tube-formation after ILK activity was inhibited or knocked down. The non-perfusion areas were increased from (62798plusmn;16995.62)mu;m2 to (84722.65plusmn;10435.01)mu;m2 after intraperitoneal injection of LY294002 into animal model of RNV, the difference was statistically significant(t=3.476,Plt;0.01). Conclusions ILK may play an important role in the process of VEGF-induced retinal neovascularization by regulating the cellular adhesion, proliferation, migration and tube-formation, as all those cellular functions were supressed obviously after the ILK activity was inhibited by LY294002 or the ILK expression was knocked down by siRNA.
Objective To summarize the research progress of controlled release of angiogenic factors and osteogenic factors in bone tissue engineering. Methods The domestic and abroad literature on the controlled release structure of growth factors during bone regeneration in recent years was extensively reviewed and summarized. Results The sustained-release structure includes direct binding, microsphere-three-dimensional scaffold structure, core-shell structure, layer self-assembly, hydrogel, and gene carrier. A sustained-release system composed of different sustained-release structures combined with different growth factors can promote bone regeneration and angiogenesis. Conclusion Due to its controllability and persistence, the growth factor sustained-release system has become a research hotspot in bone tissue engineering and has broad application prospects.