1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Intervertebral disc degeneration" 35 results
        • RESEARCH PROGRESS OF CELLULAR SENESCENCE AND SENESCENT SECRETARY PHENOTYPE IN INTERVERTEBRAL DISC DEGENERATION

          Objective To summarize the role of cellular senescence and senescent secretary phenotype in the intervertebral disc (IVD) degeneration. Methods Relevant articles that discussed the roles of cellular senescence in the IVD degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. The senescent phenomenon during IVD degeneration, senescent secretary phenotype of the disc cells, senescent pathways within the IVD microenvironment, as well as the anti-senescent approaches for IVD regeneration were systematically reviewed. Results During aging and degeneration, IVD cells gradually and/or prematurely undergo senescence by activating p53-p21-retinoblastoma (RB) or p16INK4A-RB senescent pathways. The accumulation of senescent cells not only decreases the self-renewal ability of IVD, but also deteriorates the disc microenvironment by producing more inflammatory cytokines and matrix degrading enzymes. More specific senescent biomarkers are required to fully understand the phenotype change of senescent disc cells during IVD degeneration. Molecular analysis of the senescent disc cells and their intracellular signaling pathways are needed to get a safer and more efficient anti-senescence strategy for IVD regeneration. Conclusion Cellular senescence is an important mechanism by which IVD cells decrease viability and degenerate biological behaviors, which provide a new thinking to understand the pathogenesis of IVD degeneration.

          Release date:2016-08-31 04:22 Export PDF Favorites Scan
        • RESEARCH ADVANCES IN ANIMAL MODELS OF INTERVERTEBRAL DISC DEGENERATION

          Objective To review the research advances in animal models of human disc degeneration. Methods The relative articles in recent years were extensively reviewed. Studies both at home and abroad were analyzed and classified. The advantages and disadvantages of each method were compared. Results Studies were classified as either experimentally induced models or spontaneous models. The induced models were subdivided as mechanical (alteration of forces on the normal disc), structural (injury or chemical alteration) and genetically induced models. Spontaneous models included those animals that naturally developed degenerative disc disease. Conclusion Animal model of intervertebral disc degeneration is an important path for revealing the pathogenesis of human disc degeneration, and play an important role in testing novel interventions. With recent advances in the relevance of animal models and humans, it has a great prospect in study of human disc degeneration.

          Release date:2016-09-01 09:20 Export PDF Favorites Scan
        • ADVANCES OF NUCLEUS PULPOSUS CELLS FOR TREATING INTERVERTEBRAL DISC DEGENERATION

          Objective To introduce the research of nucleus pulposus cells for treating intervertebral disc degeneration. Methods The original articles in recent years about nucleus pulposus cells for treating intervertebral disc degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. Results Nucleus pulposus cells are not only simply a remnant of embryonic notochordal cells, but have also an important influence on the well-being of the whole disc. The biological treatment strategies aim to regenerate the disc by either trying to improve the micro-enviroment within the disc or to increase the popoulation of the nucleus pulposus, which includes transplanting mesenchymal stem cellsto differentiate into nucleus-l ike cells in the degenerated intervertebral disc. Conclusion Nucleus pulposus cells or ucleus pulposus l ike cells based cell transplantation methods prove to be a promising and real istic approach for the intervertebral disc regeneration.

          Release date:2016-09-01 09:07 Export PDF Favorites Scan
        • Experimental study on the effect of zinc finger protein A20 on lumbar intervertebral disc degeneration in rabbits

          ObjectiveTo investigate the effect of zinc finger protein A20 on lumbar intervertebral disc degeneration in rabbits.MethodsTwenty-six 3-month-old New Zealand rabbits, 2.0-2.5 kg in weight, were used to establish the model of intervertebral disc degeneration at L3, 4, L4, 5, and L5, 6 by transabdominal needle puncture. At 4 weeks after operation, the 24 rabbits were randomly divided into 4 groups after successful modeling, which checked by MRI. The target intervertebral discs of each group were injected with zinc finger protein A20 overexpressed adenovirus (Ov-A20 group), empty carrier adenovirus (NC group), phosphate buffer saline (control group), and shRNA-A20 adenovirus (Sh-A20 group). The biological responses of animals in each group were comprehensive scored before 1 day of injection and after 1, 2, 3, and 6 days of injection. At 2, 4, and 8 weeks after injection, the animals in each group were observed by MRI to obtain the exact T2 relaxation time (T2 signal value). After MRI examination, the animals were killed to take the degenerative intervertebral disc tissue; and the tissue was detected by Alcian blue staining to observed the intervertebral disc degeneration. The expressions of zinc finger protein A20, collagen Ⅱ, and aggrecan were detected by immunohistochemistry staining. The expressions of zinc finger protein A20, nuclear factor κB binding protein [P65, phosphate P65 (P-P65), collagen Ⅱ, aggrecan], inflammatory factors [tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β)], autophagy-related protein [LC3 (LC3Ⅱ/LC3Ⅰ) and P62] were detected by Western blot.ResultsThe comprehensive score of biological response in each group after injection was significantly lower than that before injection (P<0.05). At 6 days after injection, the comprehensive score of biological response in the Sh-A20 group was significantly lower than that in other groups (P<0.05), and there was no significant difference among other groups (P>0.05). The detection of MRI showed that the T2 signal value in the Ov-A20 group was the highest at 2, 4, and 8 weeks after injection (P<0.05), and the T2 signal value in the Sh-A20 group was the lowest at 2 and 4 weeks after injection (P<0.05). There was no significant difference between other groups (P>0.05). Alcian blue staining showed that the expression of aggrecan was the highest in Ov-A20 group and the lowest in Sh-A20 group at 4 weeks (P<0.05); the expression of aggrecan in Ov-A20 group was the highest at 8 weeks (P<0.05), and there was no significant difference between other groups (P>0.05). Immunohistochemical staining showed that the expressions of zinc finger protein A20, collagen Ⅱ, and aggrecan were the highest in Ov-A20 group and lowest in Sh-A20 group (P<0.05). Western blot showed that the expressions of zinc finger protein A20, collagen Ⅱ, aggrecan, and LC3 (LC3Ⅱ/LC3Ⅰ) proteins were the highest in the Ov-A20 group and the lowest in Sh-A20 group (P<0.05), while the expressions of P-P65, TNF-α, IL-1β, and P62 proteins were the lowest in Ov-A20 group and the highest in Sh-A20 group (P<0.05). There was no significant difference in the expression of p65 protein between groups (P>0.05).ConclusionZinc finger protein A20 can effectively regulate the process of lumbar intervertebral disc degeneration in rabbits by inhibiting inflammation.

          Release date:2021-03-26 07:36 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF Wnt/β-catenin AND NUCLEAR FACTOR-KAPPA B PATHWAYS AND THEIR RELEVANCE TO INTERVERTEBRAL DISC DEGENERATION

          Objective To review the progress of the mechanisms of Wnt/β-catenin and nuclear factor-kappa B (NF-кB) pathways in the process of the intervertebral disc degeneration. Methods The related literature about the mechanisms of Wnt/β-catenin and NF-кB pathways in the process of the intervertebral disc degeneration was reviewed, analyzed, and summarized. Results Wnt/β-catenin and NF-кB pathways are both activated in the process of the intervertebral disc degeneration, and exist interaction. However, the specific mechanisms and interactive mediums of Wnt/β-catenin and NF-кB pathways in the process of the intervertebral disc degeneration are still unclear. Conclusion The mechanisms of Wnt/β-catenin and NF-кB pathways in the process of the intervertebral disc degeneration have to be studied deeply.

          Release date:2016-08-31 10:53 Export PDF Favorites Scan
        • STUDY ON SURVIVAL TIME OF AUTOGENEIC BMSCs LABELED WITH SUPERPARAMAGNETIC IRON OXIDE IN RABBIT INTERVERTEBRAL DISCS

          Objective To explorer the survival time of autogeneic BMSCs labeled by superparamagnetic iron oxide (SPIO) in rabbit intervertebral discs and the rule of migration so as to prove bases of gene therapy preventing intervertebral disc degeneration. Methods Twelve rabbits were used in this experiment, aged 8-10 weeks, weighing 1.5-2.0 kg and neglecting their gender. BMSCs were separated from rabbits bone marrow by density gradient centrifugation and cultivated, and the 3rd generation of BMSCs were harvested and labeled with SPIO, which was mixed with poly-l-lysine. The label ing efficiency was evaluated by Prussian blue staining and transmission electron microscope. Trypanblau stain and MTT were performed to calculate the cell’ s activity. Rabbits were randomly divided into experimental group (n=8) and control group (n=4), the labeled BMSCs and non-labeled BMSCs (5 × 105/mL) were injected into their own intervertebral discs (L1,2, L2,3, L3,4 and L4,5), respectively. At 2, 4, 6 and 8 weeks, the discs were treated with Perl’s fluid to observe cell survival and distribution. Results The label ing efficiency of BMSCs with SPIO was 95.65% ± 1.06%, the cell activity was 98.28% ± 0.85%. There was no statistically significant difference in cell prol iferation within 7 days between non-labeled and labeled cells (P gt; 0.05). After 8 weeks of operation, the injected cells was al ive. ConclusionLabeled BMSCs with SPIO is feasible in vitro and in vivo, and the cells can survive more than 8 weeks in rabbit discs.

          Release date:2016-09-01 09:08 Export PDF Favorites Scan
        • STUDY PROGRESS OF GROWTH DIFFERENTIATION FACTOR 5 OR OSTEOGENIC PROTEIN 1 INJECTION INTO A DEGENERATED DISC

          To review the advance in the experimental studies and evaluate the potential therapeutic appl ication of the growth differentiation factor 5(GDF-5) and osteogenic protein 1 (OP-1) in intervertebral disc degeneration.Methods Relevant l iterature at home and abroad publ ished in recent years was searched and analyzedcomprehensively. Results The growth factor was one of the most potential proteins in curing the intervertebral discdegeneration. In vitro, exogenous GDF-5 or OP-1 increased the deoxyribonucleic acid and proteoglycan contents ofboth nucleus pulposus and annlus fibrosis cells types significantly. GDF-5 at 200 ng/mL or OP-1 significantly stimulatedproteoglycan synthesis and collagen synthesis. In vivo, the injection of GDF-5(100 μg) or OP-1(100 μg in 10 μL 5% lactose) resulted in a restoration of disc height, improvement of magnetic resonance imaging scores, and histologic grading scores had statistical significance. Conclusion A single injection of GDF-5 or OP-1 has a reparative capacity on intervertebral discs, presumably based on its effect to stimulate matrix metabol ism of intervertebral disc cells and enhance extracellular matrix production. A single injection of exogenous GDF-5 or OP-1 in the degenerated disc shows a good prospect.

          Release date:2016-09-01 09:12 Export PDF Favorites Scan
        • RESEARCH STATUS ON MOLECULAR BASIS OF INTERVERTEBRAL DISC DEGENERATION AND REPAIRING EFFECT OF PLATELET-RICH PLASMA

          ObjectiveTo review the research status on the molecular basis of intervertebral disc degeneration and the repairing effect of platelet-rich plasma. MethodsThe related literature about the molecular basis of intervertebral disc degeneration and the repairing effect of platelet-rich plasma was reviewed, analyzed, and summarized. ResultsThe molecular basis of intervertebral disc degeneration includes genetic influences, cell senescence, decreased matrix production, increased degradative enzyme production, proinflammatory cytokine expression, apoptosis, and neural ingrowth. Platelet-rich plasma can release a series of growth factors to promote intervertebral disc cells proliferation, differentiation, and extracellular matrix synthesis. It can also inhibit proinflammatory effect and apoptosis. ConclusionAlthough the prospect of using platelet-rich plasma to repair intervertebral disc degeneration is encouraging, further studies are still needed.

          Release date: Export PDF Favorites Scan
        • Research progress of endogenous repair strategy in intervertebral disc

          ObjectiveTo review the research progress of endogenous repair strategy (ERS) in intervertebral disc (IVD).MethodsThe domestic and foreign literature related to ERS in IVD in recent years was reviewed, and its characteristics, status, and prospect in the future were summarized.ResultsThe key of ERS in IVD is to improve the vitality of stem/progenitor cells in IVD or promote its migration from stem cell Niche to the tissue that need to repair. These stem/progenitor cells in IVD are derived from nucleus pulposus, annulus fibrosus, and cartilaginous endplate, showing similar biological characteristics to mesenchymal stem cells including the expression of the specific stem/progenitor cell surface markers and gene, and also the capacity of multiple differentiations potential. However, the development, senescence, and degeneration of IVD have consumed these stem/progenitor cells, and the harsh internal microenvironment further impair their biological characteristics, which leads to the failure of endogenous repair in IVD. At present, relevant research mainly focuses on improving the biological characteristics of endogenous stem/progenitor cells, directly supplementing endogenous stem/progenitor cells, biomaterials and small molecule compounds to stimulate the endogenous repair in IVD, so as to improve the effect of endogenous repair.ConclusionAt present, ERS has gotten some achievements in the treatment of IVD degeneration, but its related studies are still in the pre-clinical stage. So further studies regarding ERS should be carried out in the future, especially in vivo experiments and clinical transformation.

          Release date:2021-06-07 02:00 Export PDF Favorites Scan
        • EFFECTS OF RECOMBINANT ADENOVIRUS VECTOR CARRYING HUMAN INSULIN-LIKE GROWTH FACTOR 1 GENE ON THE APOPTOSIS OF NUCLEUS PULPOSUS CELLS IN VITRO

          Objective To investigate the effects of human insulin-like growth factor 1 (hIGF-1) gene transfected by recombinant adenovirus vector (Ad-hIGF-1) on the apoptosis of rabbit nucleus pulposus cells induced by tumor necrosis factor α (TNF-α). Methods The intervertebral disc nucleus pulposus were harvested from 8 healthy adult domestic rabbits (male or female, weighing 2.0-2.5 kg). The nucleus pulposus cells were isolated with collagenase II digestion and the passage 2 cells were cultured to logarithm growing period, and then they were divided into 3 groups according to culture condition: DMEM/F12 medium containing 10% PBS, DMEM/F12 medium containing 10% PBS and 100 ng/mL TNF-α, and DMEM/ F12 medium containing 10% PBS, 100 ng/ mL TNF-α, and Ad-hIGF-1 (multiplicity of infection of 50) were used in control group, TNF-α group, and Ad-hIGF-1 group, respectively. The results of transfection by adenovirus vector carrying hIGF-1 gene were observed by fluorescent microscopy; the expression of hIGF-1 protein was detected by Western blot, hIGF-1 mRNA expression by RT-PCR, and the cell apoptosis rate by TUNEL and flow cytometry. Results Green fluorescence was observed by fluorescent microscopy in Ad-hIGF-1 group, indicating that successful cell transfection. The expressions of hIGF-1 protein and mRNA were detected in Ad-hIGF-1 group by Western blot and RT-PCR, while the control group and TNF-α group had no expression. The cell apoptosis rates of TNF-α group, Ad-hIGF-1 group, and control group were 34.24% ± 4.60%, 6.59% ± 1.03%, and 0.40% ± 0.15%, respectively. The early apoptosis rates of TNF-α group, Ad-hIGF-1 group, and control group were 22.16% ± 2.69%, 5.03% ± 0.96%, and 0.49% ± 0.05%, respectively; the late cell apoptosis rates were 13.96% ± 4.86%, 10.68% ± 3.42%, and 0.29% ± 0.06%, respectively. Compared with TNF-α group, the cell apoptosis rates of Ad-hIGF-1 group and control group were significantly reduced (P lt; 0.05); the cell apoptosis rate of Ad-hIGF-1 group was significantly higher than that of control group (P lt; 0.05). Conclusion Ad-hIGF-1 could inhibit the apoptosis of nucleus pulposus cells induced by TNF-α.

          Release date:2016-08-31 04:05 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品