Objective To investigate the cellular viability and mitochondrial reactive oxygen species (ROS) production of the Müller cells under high glucose condition, and explore the protection role of the 5,6-dihydrocyclopenta-1, 2-dithiole-3-thione (CPDT) on Müller cells. Methods Müller cells from Sprague Dawley rats were divided into 5 groups randomly, including 25 mmol/L normal glucose group (group A) and 65 mmol/L high glucose group (group B). High glucose group with 45, 60, 70 μmol/L CPDT and cultured them 72 hour was set as group C, D and E. Water soluble tetrazolium salt (WST)-8 was used to measure the cellular viability. Flow cytometry was used to measure the active oxygen and apoptosis index. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), Bcl-2 and Bax protein were measured by Western blot. Results Compared with group A, the WST-8 showed that the viability of Müller cells apparently decreased in group B (t=39.59,P<0.05). Compared with the group B, the viability of Müller cells had changes in group C (t=0.97,P>0.05), but recovered in group D and E (t=?4.17, ?7.52;P<0.05). Compared with group A, the FCM showed that the mitochondrial ROS levels was higher in group B (t=?30.99,P<0.05). Compared with group B, the mitochondrial ROS levels were decreased in group D (t=27.68,P<0.05). Compared with group A, Bax, Nrf2 and HO-1 increased (t=–11.03, –63.17, –11.44;P<0.05), while the bcl-2 decreased in group B (t=7.861,P<0.05). Compared with the group B, Nrf2, HO-1 and Bax decreased (t=15.11, 26.59, 6.27;P<0.05), while the bcl-2 increased in group D (t=?6.53,P<0.05). Conclusions Under the high glucose, CPDT may reduce the mitochondrial ROS levels and the expression of Nrf2, HO-1 and Bax protein of Müller cells. It may inhibit apoptosis through activating the Nrf2/HO-1 pathway and balancing of level of Bcl-2 protein and mitochondrial ROS.
Objective To investigate the effect of astragaloside A (AS-A) on the photoreceptor degeneration induced by sodium iodate (NaIO3) and its related mechanism. MethodsSixty healthy male C57BL/6J mice, aged 6-8 weeks, were randomly divided into normal control (NC) group, NaIO3 group, and AS-A group, with twenty mice in each group. 30 min before modeling, AS-A group mice were intraperitoneally injected with 100 μl AS-A at a dose of 100 mg/kg body weight. 30 min later, mice in NaIO3 group and AS-A group were intraperitoneally injected with 100 μl NaIO3 at a dose of 30 mg/kg body weight. Subsequently, AS-A group mice were administered AS-A twice daily at 12 h intervals until the end of the experiment. On day 1 post-modeling, zonula occludens-1 (ZO-1) immunohistochemistry was performed to observe the structure of retinal pigment epithelium (RPE) cells; real-time quantitative polymerase chain reaction (qPCR) was conducted to detect the mRNA expression of various retinal chemokine ligand-2 (Ccl2), interleukin-1 beta (Il-1β), mixed lineage kinase domain-like protein (Mlkl), receptor-interacting protein kinase 3 (Ripk3), and tumor necrosis factor (Tnf). On day 3 post-modeling, immunohistochemistry was performed to observe the expression of ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acid protein (GFAP) in the retina; TdT-mediated dUTP nick-end labeling (TUNEL) assay was used to detect photoreceptor cell death in each group. On day 4 post-modeling, fundus morphology of mice in each group was observed by fundus color photography and optical coherence tomography (OCT). Hematoxylin-eosin staining (HE) was used to observe the morphological structure of the retina in each group. Inter-group comparisons between two groups were conducted using independent samples t-test, while comparisons among three groups were performed using one-way ANOVA. ResultsFundus color photography and OCT examination showed that a large number of scattered yellow-white subretinal nodular structures in the fundus of NaIO3 group mice, and a large number of strong reflection areas in the RPE layer. The number of strong reflection areas in the RPE layer was reduced in the AS-A group. Immunohistochemical analysis of ZO-1 showed that ZO-1 was largely lost on the RPE cell membrane in that NaIO3 group; whereas in the AS-A group, ZO-1 was evenly distributed on the RPE cell membrane. HE staining results showed circular black deposits were visible in the RPE layer of the NaIO3 group, and the inner and outer segments of photoreceptors were severely damaged, with a significant decrease in the number of outer nuclear layer (ONL) cell nuclei; whereas in the AS-A group, the RPE layer pigments were orderly, the inner and outer segments of photoreceptors were intact, and the number of ONL cell nuclei significantly increased. The results of TUNEL staining show that numerous TUNEL-positive cell nuclei were observed in the ONL of the retina in the NaIO3 group, while the number of TUNEL-positive cell nuclei in the ONL of the retina was significantly reduced in the AS-A group, with statistically significant differences (t=2.66, P<0.05). The analysis of qPCR data showed that compared with the AS-A group, the relative expression levels of Mlkl, Ripk3, Ccl2, Il-1β and Tnf mRNA in the retina were significantly increased in the NaIO3 group, with statistically significant differences (F=39.18, 10.66, 53.51, 41.40, 24.13; P<0.001). Immunohistochemical staining results showed that compared with NC group and AS-A group, the positive expression of GFAP in retina of NaIO3 group was significantly increased, and the difference was statistically significant (F=9.62, P<0.05). ConclusionAS-A antagonizes NaIO3-induced photoreceptor degeneration in part by inhibiting photoreceptor cell death and neuroinflammation. Meanwhile, AS-A treatment protects against NaIO3-triggered perturbation of retinal homeostasis.
ObjectiveTo observe the effect of conditional knocking out (KO) vascular endothelial growth factor (VEGF) gene on the mouse model of oxygen induced retinopathy (OIR).MethodsThe conditional VEGF KO mice were generated using Cre-Loxp technology, resulting in the deletion of VEGF in a portion of Müller cells permanently in mouse retina. Cre positive was CKO mice, Cre negative was NKO mice. OIR was induced by keeping mice in 75% oxygen at postnatal 7 days (P7) to P12 and in room air from P12 to P17 (each 20 mice for CKO and NKO, respectively). The mice mortality was analyzed. At day P17, the percentage of retinal avascular area was calculated using retinal flat-mounting with fluorescence angiography, the number of vascular endothelial cell nucleus breaking through retinal inner limiting membrane was counted with hematoxylin eosin (HE) staining of retinal sections, and the expression of hypoxia-inducible factor-1α (HIF-1α) was detected by immunofluorescence analysis. ResultsDuring the development of OIR, the mortality rate of CKO mice (65.00%) was higher than that of NKO mice (30.00%) with the significant difference (x2=4.912, P=0.027). At day P17, all the mice retinas were harvested. The retinal fluorescence angiography displayed that the normal retinal vascularization of CKO mice was delayed, and large avascular areas were observed. Meanwhile, rare new vascular plexus was found in CKO mice and the thickness of whole retina decreased dramatically. In contrast, NKO mice developed larger area of normal retinal vascular network structure with higher blood vessel density and more new vascular plexus with obvious fluorescein leakage. The percentage of avascular area in CKO mice [(28.31±11.15)%] was higher than NKO mice [(16.82±7.23)%] with the significant difference (t=2.734, P=0.014). The HE staining of retinal sections indicated smaller counts of vascular endothelial cell nucleus breaking through retinal inner limiting membrane in CKO mice (26.10±6.37) when compared to NKO mice (28.80±7.59) , the difference was significant (t=2.437, P=0.016). The immunofluorescence analysis showed stronger expression of HIF-1α in CKO mice than NKO mice, which was mainly located in the retinal ganglion cell layer.ConclusionsThe local VEGF gene knockout partially inhibits retinal neovascularization in OIR mice. However, it also suppresses the normal retinal blood vascular development with a decrease of OIR mice survival ability.
ObjectiveTo observe the role of Notch signaling pathway inhibitor in differentiation process of stem cells derived from retinal Müller cells into the ganglion cell.
MethodsRetinas of Sprague Dawley rat at postnatal 10-20 days were dissociated from eye balls. The third passage of Müller cells was used in this experiment, which cultured by repeated incomplete pancreatic enzyme digestion method. The retinal Müller cells were induced in the serum-free dedifferentiation medium. The cell proliferation state was observed under an inverted microscope. The expression of the specific markers Nestin and Ki-67 of retinal stem cells was measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. The positive rate of nucleus was detected by Edu. The retinal stem cells was divided into Gamma secretase inhibtor-I (GSI) group and control group, the rate of ganglion cells was counted by using immunofluorescence staining.
ResultsThe cell proliferation had gathered to form a sphere. Immunofluorescence staining showed that the expressions of Nestin and Ki-67 were (92.94±6.48%) and (85.96±6.04%) respectively. Edu positive rate of nucleus was (82.80±6.65)%. RT-PCR and Western blot further confirmed the high expression of Nestin and Ki-67 in the cell spheres but not in the Müller cells. The positive rate of ganglion cells were (16.98±2.87)% and (11.17±0.71)% in GSI group and control group respectively, with the significant difference (t=3.210, P=0.002).
ConclusionNotch signaling pathway is an important regulatory gene in stem cells differentiated into retinal ganglion cell.
Objective To investigate the effects of removing microglia from spinal cord on nerve repair and functional recovery after spinal cord injury (SCI) in mice. MethodsThirty-nine 6-week-old female C57BL/6 mice were randomly divided into control group (n=12), SCI group (n=12), and PLX3397+SCI group (n=15). The PLX3397+SCI group received continuous feeding of PLX3397, a colony-stimulating factor 1 receptor inhibitor, while the other two groups were fed a standard diet. After 14 days, both the SCI group and the PLX3397+SCI group were tested for ionized calcium binding adapter molecule 1 (Iba1) to confirm that the PLX3397+SCI group had completely depleted the spinal cord microglia. The SCI model was then prepared by clamping the spinal cord in both the SCI group and the PLX3397+SCI group, while the control group underwent laminectomy. Preoperatively and at 1, 3, 7, 14, 21, and 28 days postoperatively, the Basso Mouse Scale (BMS) was used to assess the hind limb function of mice in each group. At 28 days, a footprint test was conducted to observe the gait of the mice. After SCI, spinal cord tissue from the injury site was taken, and Iba1 immunofluorescence staining was performed at 7 days to observe the aggregation and proliferation of microglia in the spinal cord. HE staining was used to observe the formation of glial scars at the injury site at 28 days; glial fibrillary acidic protein (GFAP) immunofluorescence staining was applied to astrocytes to assess the extent of the injured area; neuronal nuclei antigen (NeuN) immunofluorescence staining was used to evaluate neuronal survival. And 5-hydroxytryptamine (5-HT) immunofluorescence staining was performed to assess axonal survival at 60 days. Results All mice survived until the end of the experiment. Immunofluorescence staining revealed that the microglia in the spinal cord of the PLX3397+SCI group decreased by more than 95% compared to the control group after 14 days of continuous feeding with PLX3397 (P<0.05). Compared to the control group, the BMS scores in the PLX3397+SCI group and the SCI group significantly decreased at different time points after SCI (P<0.05). Moreover, the PLX3397+SCI group showed a further decrease in BMS scores compared to the SCI group, and exhibited a dragging gait. The differences between the two groups were significant at 14, 21, and 28 days (P<0.05). HE staining at 28 days revealed that the SCI group had formed a well-defined and dense gliotic scar, while the PLX3397+SCI group also developed a gliotic scar, but with a more blurred and loose boundary. Immunofluorescence staining revealed that the number of microglia near the injury center at 7 days increased in the SCI group than in the control group, but the difference between groups was not significant (P>0.05). In contrast, the PLX3397+SCI group showed a significant reduction in microglia compared to both the control and SCI groups (P<0.05). At 28 days after SCI, the area of spinal cord injury in the PLX3397+SCI group was significantly larger than that in SCI group (P<0.05); the surviving neurons significantly reduced compared with the control group and SCI group (P<0.05). The axonal necrosis and retraction at 60 days after SCI were more obvious. ConclusionThe removal of microglia in the spinal cord aggravate the tissue damage after SCI and affecte the recovery of motor function in mice, suggesting that microglia played a neuroprotective role in SCI.
Objective
To observe the effect of netrin-1 on retinal Müller cells in diabetes mellitus (DM) rats.
Methods
Fifty Sprague-Dawley rats were randomly divided into the normal control group (group A), normal + balanced salt solution (BSS) group (group B), normal+netrin-1 group (group C), DM+BSS group (group D) and DM+netrin-1 group (group E), with 10 rats in each group. DM rats were induced by intraperitoneal injection of Streptozotocin (60 mg/kg). The expression level of glial fibrillary acidic protein (GFAP) on retinal Müller cells was determined by immunohistochemistry, the level of GFAP mRNA was analyzed by real-time fluorescence quantitative reverse transcription polymerase chain reaction.
Results
Immunohistochemistry showed that GFAP was distributed in retinal ganglion cells and retinal nerve fiber layer in group A, B and C. Compared to group B, GFAP staining was brighter in the group D. There were significant differences in the expression of GFAP protein and mRNA among groups A-E (F=203.43, 72.91; P=0.00, 0.00), they were higher in group D than group A (t=?26.01, 22.26; P=0.00, 0.00), and group E (t=?10.78, 3.93; P=0.00, 0.00). They were higher in group E than group A (t=7.00, ?9.82; P=0.00, 0.00). There were no significant differences in between group A and group C (t=?0.29, 0.50; P=0.77, 0.62).
Conclusion
The expression of GFAP in Müller cells of DM rats could be decreased by injecting netrin-1 into vitreous.
The human hereditary retinal degeneration is one of the main cause of irreversible blindness in the world. the mechanisms leading to retinal photoreceptor degeneration are not entirely clear. However, microglia acting as innate immune monitors are found to be activated early in retinal degeneration in many retinitis pigmentosa animal models. These activated microglia are involved in phagocyte rod cell fragments of degenerated retina, and also produce high levels of cytotoxic substances such as pro-inflammatory cytokines and chemokines, which aggravate the death of adjacent healthy photoreceptor cells. It suggests that microglia activation plays an important role in photoreceptor degeneration. At the same time, a series of studies have confirmed that some drugs can prevent or reduce neuronal death and slow the occurrence and progression of retinal degeneration by interfering with abnormal activation of microglia. It is expected to be a new choice for the treatment of hereditary retinal degeneration.
Ischemic retinopathy, resulting in multiple lesions like microvasculature damage, inflammation and neovascularization, is a major contributor of vision damage. In these pathological changes, retinal glia cannot be ignored in the development of retinopathy. They constitute a highly versatile population that interacts with various cells to maintain homeostasis and limit disease. Therefore, glial activation and gliosis are strikingly ubiquitous responses to almost every form of retinal disease. Both of microglial cells and Müller cells are major intrinsic retinal glial cells and they are in close relationship, which means they can influence each other, make joint action or even become interdependent. They exhibit morphological and functional changes to have an impact on degree of retinal injury through different responses, which mediated by glial cells are important not only for course of disease progression, but also for the maintenance of neuronal and photoreceptor survival. Thus, defining the mechanisms that underlie communications between microglial cells and Müller cells could enable the development of more selective therapeutic targets, with great potential clinical applications.
Diabetic retinopathy (DR) is one of the main causes of vision loss and irreversible blindness in the working-age population, closely regarded as the destruction of the retinal neurovascular unit (NVU). As an important component of the NVU, retinal microglia (RMG) plays a vital role in the progression of DR. In recent years, single-cell RNA sequencing (scRNA-seq) technology has emerged as an important tool in transcriptomic analysis. This latest method reveals the heterogeneity and complexity of RNA transcriptional profiles within individual cells, as well as the composition of different cell types and functions. Utilizing scRNA-seq technology, researchers have further revealed the role of RMG in the occurrence and development of DR, discovering phenotypic heterogeneity, regional heterogeneity, and cell-to-cell communication in RMG. It is anticipated that in the future, more omics technologies and multi-omics correlation analysis methods will be applied to DR and even other ophthalmic diseases, exploring potential diagnostic and therapeutic targets, providing different perspectives for the clinical diagnosis, treatment, and scientific research of DR, and truly promoting clinical translation through technological innovation, thereby benefiting patients with DR diseases.
Neural stem cell is a kind of stem cells that can differentiate into neural and glial cells. While Müller cells, the main endogenous neural stem cell in retina,have the features to reentry into the cell cycle and differentiate into neural cells after retinal damage. Although it is highly effective for retinal Müller cell differentiation spontaneously after retinal injury in vertebrates, this feature is rigorous restricted in mammals. Recently, some transcription factors,such as Ascl1, Sox2, Lin28, Atoh7, are sufficient to drive quiescent Müller cells back in proliferation to generate new retinal neurons. Moreover, combining Ascl1 expression with a histone deacetylase inhibitor can bypass the limitation and increase the generation of new neurons in the adult retina. These regenerated neurons integrate the existing neuronal network and are able to respond to light, indicating that they can likely be used to restore vision. While these results are extremely promising, the regenerative response is still limited, likely because the proliferative capacity of mammalian Müller cells is low compared to their zebrafish counterparts. It is indeed necessary to identify new factors increasing the efficiency of the regenerative response.