1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Multi-scale" 25 results
        • Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification

          Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen’s Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.

          Release date:2024-04-24 09:40 Export PDF Favorites Scan
        • A method for photoplethysmography signal quality assessment fusing multi-class features with multi-scale series information

          Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        • Detection model of atrial fibrillation based on multi-branch and multi-scale convolutional networks

          Atrial fibrillation (AF) is a life-threatening heart condition, and its early detection and treatment have garnered significant attention from physicians in recent years. Traditional methods of detecting AF heavily rely on doctor’s diagnosis based on electrocardiograms (ECGs), but prolonged analysis of ECG signals is very time-consuming. This paper designs an AF detection model based on the Inception module, constructing multi-branch detection channels to process raw ECG signals, gradient signals, and frequency signals during AF. The model efficiently extracted QRS complex and RR interval features using gradient signals, extracted P-wave and f-wave features using frequency signals, and used raw signals to supplement missing information. The multi-scale convolutional kernels in the Inception module provided various receptive fields and performed comprehensive analysis of the multi-branch results, enabling early AF detection. Compared to current machine learning algorithms that use only RR interval and heart rate variability features, the proposed algorithm additionally employed frequency features, making fuller use of the information within the signals. For deep learning methods using raw and frequency signals, this paper introduced an enhanced method for the QRS complex, allowing the network to extract features more effectively. By using a multi-branch input mode, the model comprehensively considered irregular RR intervals and P-wave and f-wave features in AF. Testing on the MIT-BIH AF database showed that the inter-patient detection accuracy was 96.89%, sensitivity was 97.72%, and specificity was 95.88%. The proposed model demonstrates excellent performance and can achieve automatic AF detection.

          Release date:2024-10-22 02:33 Export PDF Favorites Scan
        • Progress in the analysis of hemolysis and coagulation models for interventional micro-axial flow blood pumps

          Interventional micro-axial flow blood pump is widely used as an effective treatment for patients with cardiogenic shock. Hemolysis and coagulation are vital concerns in the clinical application of interventional micro-axial flow pumps. This paper reviewed hemolysis and coagulation models for micro-axial flow blood pumps. Firstly, the structural characteristics of commercial interventional micro-axial flow blood pumps and issues related to clinical applications were introduced. Then the basic mechanisms of hemolysis and coagulation were used to study the factors affecting erythrocyte damage and platelet activation in interventional micro-axial flow blood pumps, focusing on the current models of hemolysis and coagulation on different scales (macroscopic, mesoscopic, and microscopic). Since models at different scales have different perspectives on the study of hemolysis and coagulation, a comprehensive analysis combined with multi-scale models is required to fully consider the influence of complex factors of interventional pumps on hemolysis and coagulation.

          Release date: Export PDF Favorites Scan
        • Advances in methods and applications of single-cell Hi-C data analysis

          Chromatin three-dimensional genome structure plays a key role in cell function and gene regulation. Single-cell Hi-C techniques can capture genomic structure information at the cellular level, which provides an opportunity to study changes in genomic structure between different cell types. Recently, some excellent computational methods have been developed for single-cell Hi-C data analysis. In this paper, the available methods for single-cell Hi-C data analysis were first reviewed, including preprocessing of single-cell Hi-C data, multi-scale structure recognition based on single-cell Hi-C data, bulk-like Hi-C contact matrix generation based on single-cell Hi-C data sets, pseudo-time series analysis, and cell classification. Then the application of single-cell Hi-C data in cell differentiation and structural variation was described. Finally, the future development direction of single-cell Hi-C data analysis was also prospected.

          Release date:2023-10-20 04:48 Export PDF Favorites Scan
        • Research on the effect of multi-modal transcranial direct current stimulation on stroke based on electroencephalogram

          As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation (P < 0.05), in the left central region after anodal-stimulation (P < 0.05), and in the frontal and right central regions after cathodal-stimulation (P < 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation (P < 0.05), in the left frontal and right central regions after anodal- stimulation (P < 0.05), and in the central and right occipital regions after cathodal-stimulation (P < 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant (P > 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.

          Release date:2022-12-28 01:34 Export PDF Favorites Scan
        • Motor imagery classification based on dynamic multi-scale convolution and multi-head temporal attention

          Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.

          Release date:2025-08-19 11:47 Export PDF Favorites Scan
        • Brain magnetic resonance image registration based on parallel lightweight convolution and multi-scale fusion

          Medical image registration plays an important role in medical diagnosis and treatment planning. However, the current registration methods based on deep learning still face some challenges, such as insufficient ability to extract global information, large number of network model parameters, slow reasoning speed and so on. Therefore, this paper proposed a new model LCU-Net, which used parallel lightweight convolution to improve the ability of global information extraction. The problem of large number of network parameters and slow inference speed was solved by multi-scale fusion. The experimental results showed that the Dice coefficient of LCU-Net reached 0.823, the Hausdorff distance was 1.258, and the number of network parameters was reduced by about one quarter compared with that before multi-scale fusion. The proposed algorithm shows remarkable advantages in medical image registration tasks, and it not only surpasses the existing comparison algorithms in performance, but also has excellent generalization performance and wide application prospects.

          Release date: Export PDF Favorites Scan
        • A novel approach for assessing quality of electrocardiogram signal by integrating multi-scale temporal features

          During long-term electrocardiogram (ECG) monitoring, various types of noise inevitably become mixed with the signal, potentially hindering doctors' ability to accurately assess and interpret patient data. Therefore, evaluating the quality of ECG signals before conducting analysis and diagnosis is crucial. This paper addresses the limitations of existing ECG signal quality assessment methods, particularly their insufficient focus on the 12-lead multi-scale correlation. We propose a novel ECG signal quality assessment method that integrates a convolutional neural network (CNN) with a squeeze and excitation residual network (SE-ResNet). This approach not only captures both local and global features of ECG time series but also emphasizes the spatial correlation among ECG signals. Testing on a public dataset demonstrated that our method achieved an accuracy of 99.5%, sensitivity of 98.5%, and specificity of 99.6%. Compared with other methods, our technique significantly enhances the accuracy of ECG signal quality assessment by leveraging inter-lead correlation information, which is expected to advance the development of intelligent ECG monitoring and diagnostic technology.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        • The dual-stream feature pyramid network based on Mamba and convolution for brain magnetic resonance image registration

          Deformable image registration plays a crucial role in medical image analysis. Despite various advanced registration models having been proposed, achieving accurate and efficient deformable registration remains challenging. Leveraging the recent outstanding performance of Mamba in computer vision, we introduced a novel model called MCRDP-Net. MCRDP-Net adapted a dual-stream network architecture that combined Mamba blocks and convolutional blocks to simultaneously extract global and local information from fixed and moving images. In the decoding stage, we employed a pyramid network structure to obtain high-resolution deformation fields, achieving efficient and precise registration. The effectiveness of MCRDP-Net was validated on public brain registration datasets, OASIS and IXI. Experimental results demonstrated significant advantages of MCRDP-Net in medical image registration, with DSC, HD95, and ASD reaching 0.815, 8.123, and 0.521 on the OASIS dataset and 0.773, 7.786, and 0.871 on the IXI dataset. In summary, MCRDP-Net demonstrates superior performance in deformable image registration, proving its potential in medical image analysis. It effectively enhances the accuracy and efficiency of registration, providing strong support for subsequent medical research and applications.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品