Objective Dexamethasone is one of the basic agents which could induce osteogenic differentiation of mesenchymal stem cells. To investigate the optimal concentration of dexamethasone in osteogenic differentiation of adiposederivedstem cells (ADSCs) so as to provide the theoretical basis for further bone tissue engineering researches. Methods FiveNew Zealand rabbits (2-3 kg) of clean grade, aged 3 months and male or female, were obtained. ADSCs were isolated from the subcutaneous adipose tissue of inguinal region, and cultured with collagenase digestion, then were detected and identified by CD44, CD106 immunofluorescence staining and adi pogenic differentiation. ADSCs at passage 3 were used and the cell density was adjusted to 1 × 105 cells/mL, then the cells were treated with common cultural medium (group A) and osteogenic induced medium containing 0 (group B), 1 × 10-9 (group C), 1 × 10-8 (group D), 1 × 10-7 (group E), 1 × 10-6 (group F), and 1 × 10-5 mol/ L (group G) dexamethasone, respectively. The cell prol iferation and the mRNA expressions of osteocalcin (OC) and core binding factor α1 (Cbfα1) were detected by MTT and RT-PCR, respectively. The activity of alkal ine phosphatase (ALP) was measured, and the percentage of mineral area was calculated. The mineral nodules were also detected by al izarin red staining. Results ADSCs mostly presented fusiform and polygon shape with positive expression of CD44 and negative expression of CD106. The result of oil red O staining was positive after ADSCs treated with adipogenic induced medium. The result of MTT revealed that the absorbance (A) value decl ined with the ascending of the concentration of dexamethasone, and there was significant difference in A value between groups D and E at 5 and 7 days after osteogenic induction (P lt; 0.05). The mRNA expressions of OC and Cbfα1 reached the peak in groups E and D at 7 days after osteogenic induction, respectively. The activity of ALP and the percentage of mineral area had the maximum value in group D at 14 days, then decl ined gradually. There was no significant difference in the mRNA expressions of OC and Cbfα1, the activity of ALP, and the percentage ofmineral area between groups D and E (P gt; 0.05), but significant differences were found between groups D and E and other groups (P lt; 0.05). After 14 days, the cells of group G died, and the result of al izarin red staining was positive in groups B, C, D, E, and F. Conclusion When the concentration of dexamethasone in osteogenic medium is 1 × 10-8 mol/L, it could not only reduce the inhibitive effect on cells prol iferation, but also induce osteogenic differentiation of ADSCs more efficiently.
Objective To clarify the trends of expression levels of several up-regulated micro RNA (miRNA) in tissues of atrophic bone nonunion and mRNAs and proteins of their related target genes in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and to explore their biological functions. Methods The hBMSCs were isolated from bone marrow of il iac bone by gradient centrifugation, and cultured. Osteogenic culture medium was used for osteogenic differentiation of the 4th generation of hBMSCs. The changes of corresponding miRNAs, mRNA and protein expression levels of related target genes were observed at 0 hour, 12 hours, 1 day, 2 days, 4 days, 7 days, and 14 days, by quantitative real-time PCR and Western blot. Results In the process of hBMSCs osteogenic differentiation, the mRNA and protein expression levels of osteoblastic target genes [alkal ine phosphatase l iver/bone/kidney (ALPL), bone morphogeneticprotein 2 (BMP-2), and platelet-derived factor alpha polypeptide (PDGF-A)] at most time points increased significantly whencompared with the values at 0 hour except that of BMP-2 decreased at 12 hours and 1 day, with maximum changes at 1 to 7 days. The miRNA expression levels, mRNA and protein expression levels changed significantly at different time points, while the trends of hsa-miRNA-149 and hsa-miRNA-654-5p changes were negatively correlated with the trends of ALPL and BMP-2 mRNA and protein expression changes respectively (P lt; 0.05). There was no obviously negative correlation between the trends of hsa-miRNA-221 change and PDGF-A change (P gt; 0.05). Conclusion In the osteogenic differentiation process of hBMSCs, hsa-miRNA-149 and hsa-miRNA-654-5p are closely related with the mRNA and protein regulation of ALPL and BMP-2, respectively.
Objective To investigate the effects of the recombinanthuman bone morphogenetic protein 2 (rhBMP-2) and/or the osteogenic agents on proliferation and expression of the osteoblast phenotype differentiation of the SD rat mesenchymal stem cells(MSCs). Methods The rat MSCs were cultured in vitro and were randomly divided into the experimental groups(Groups A-I) and the control group. In the experimental group, MSCs were induced by rhBMP2 in different doses (10, 50, 100 and 200 μg/L) in Groups BE, the osteogenic agent alone (Group A) and by the combined use of rhBMP-2 [in different doses (10,50, 100 and 200 μg/L)] and the osteogenic agent in Groups F-I. The MTT colorimetric assay was used to evaluate the proliferation, and the activities of alkaline phosphatase (ALP) and osteocalcin (OC) were observed at 3, 6, 9, 12 days, respectively. Results The inverted phase contrast microscopy showed that MSCs by primary culture for 12 hours were adhibited, with a fusiform shape at 48 hours. At 4 days they were polygonal or atractoid, and were spread gyrately or radiately at 6 days. At 10 days, they were spread at the bottom of the bottle.The statistical analysis showed that the expression of the osteoblast phenotype differentiation of MSCs could be induced in the experimental groups. The proliferation of MSCs could be enhanced in a dosedependent manner in GroupsB-E. The expression of the osteoblast phenotype differentiation, which was tested by the activities of ALP and OC, was significantly higher in Groups F-I than in Groups A-E. Conclusion The combined use of rhBMP-2 and the osteogenic agents can enhance the MSC proliferation and induce an expressionand maintenance of the osteoblast phenotype differentiation of the rat MSCs.
Objective To investigate the effect of various concentration of platelet-rich plasma (PRP) on osteogenic differentiation of rabbit skeletal muscle-derived stem cells (SMSCs) cultured in vitro. Methods Blood drawn from the central ear arteries of 9 one-year-old New Zealand white rabbits weighing 2.5-3.0 kg (male and female) was used to prepare PRP (Landesberg method). Full blood count and platelet count in PRP were tested. Soleus muscle of right hindl imb in rabbit was obtained and used to culture SMSCs in vitro. The cells at passage 3 were randomly divided into different groups: the experimental groups in which the cells were treated by conditioned culture media with various concentrations of autologousPRP (6.25%, 12.50%, 25.00%, 50.00%), and the control group in which the cells were treated with the media without PRP. At different time points after intervention, osteogenetic activity of the cells was detected by ALP staining observation, ALP activity detection was conducted, al izarin red staining for calcium nodules and immunofluorescence staining for osteocalcin were performed, and core binding factor α1 (Cbfα1) of osteogenic gene expression was tested by RT-PCR. Results The full blood PRP count and the platelet count in PRP was (3.06 ± 0.46) × 105/μL and (18.08 ± 2.10) × 105/μL, respectively. ALP staining: the cells in all the experimental groups were positive for the staining with many black sediment particles in cytoplasm; the cells in the control group were negative staining. ALP activity: all the experimental groups were higher than the control group (P lt; 0.05), the experimental group at 12.50% was superior to other experimental groups at each time point (P lt; 0.05). Al izarin red staining: at 14 days after culture, orange-red calcium nodules were evident in all the experimental groups; no orange-red calcium nodules were observed in the control group with a mineral ization rate of zero; there were significant difference between the experimental groups and the control group in terms of mineral ization rate (P lt; 0.05), the experimental group at 12.50% had a higher mineral ization rate than other experimental groups (P lt; 0.05). Immunofluorescence staining for osteocalcin: at 7 days after culture, the experimental groups were positive for the staining with yellow fluorescence in cytoplasm, and the result of the control group was negative. RT-PCR detection: no obvious changes of the gene expression were noted at 4, 12, and 24 hoursafter culture in the control group; the gene expression in all the experimental groups was significant superior to that of control group, especially at 12 hours, and the expression in the experimental group at 12.50% was the highest. Conclusion PRP can obviously promote the osteogenic differentiation of SMSCs cultured in vitro in a concentration-dependent manner, and the 12.50% is proved to be the ideal concentration.
ObjectiveTo investigate the effect of tissue interface stiffness change on the spreading, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs), and to find the suitable stiffness range for stem cell differentiation.
MethodsBone marrow of male Sprague Dawley rats (4 weeks old) were selected to isolate and culture BMSCs by whole bone marrow cell adherent method. The third generation BMSCs (1×105 cells/mL) were inoculated into the ordinary culture dishes covered with polyacrylamide hydrophilic gel (PA) which elastic modulus was 1, 4, 10, 40, and 80 kPa (cells seeded on PA), and ordinary culture dish (75 MPa extreme high elastic modulus) as control. Spreading of cells in different stiffness of PA was observed under light microscope. The elastic modulus values of 4, 10, and 40 kPa PA were selected as groups A, B, and C respectively; the ordinary culture dish (75 MPa extreme high elastic modulus) was used as control group (group D). Cell counts was used to detect the growth conditions of BMSCs, alkaline phosphatase (ALP) kit to detect the concentration of ALP, alizarin red staining technique to detect calcium deposition status, and real-time quatitative PCR technique to detect the expressions of bone gla protein (BGP), Runx2, and collagen type I mRNA.
ResultsWith increased PA stiffness, BMSCs spreading area gradually increased, especially in 10 kPa and 40 kPa. At 1 and 2 days after culture, the growth rate showed no significant difference between groups (P > 0.05); at 3-5 days, the growth rate of groups B and C was significantly faster than that of groups A and D (P < 0.05), but difference was not statistically significant between groups A and D (P < 0.05); at 5 days, the proliferation of group C was significantly higher than that of group B (P < 0.05). ALP concentrations were (53.69±0.89), (97.30±1.57), (126.60±14.54), and (12.93±0.58) U/gprot in groups A, B, C, and D respectively; groups A, B, and C were significantly higher than group D, and group C was significantly higher than groups A and B (P < 0.05). Alizarin red staining showed that the percentages of calcium nodules was 20.07%±4.24% in group C; group C was significantly higher than groups A, B, and D (P < 0.05). The expression levels of BGP and collagen type I mRNA were significantly higher in groups A, B, and C than group D, and in group C than groups A and B (P < 0.05). The expression level of Runx2 mRNA was significantly higher in groups B and C than group D, and in group C than group B (P < 0.05), but no significant difference was found between groups A and D (P > 0.05).
ConclusionPA elastic modulus of 10-40 kPa can promote the proliferation and osteogenic differentiation of BMSCs, and the higher the stiffness, the stronger the promoting effect.
ObjectiveTo investigate the effect of Notch signaling pathway important target Hey1 expression on the differentiation and proliferation of C3H10T1/2 cells induced by bone morphogenetic protein 9 (BMP-9).
MethodsHey1 lentivirus and Hey1 short hairpin RNA lentivirus were constructed and used to infect C3H10T1/2 cells to change the expression level of Hey1 in C3H10T1/2 cells. C3H10T1/2 cells infected with LV-Blank (empty plasmid) as control. The Hey1 expression levels of different groups were detected by fluorescence microscope, real-time fluorescence quantitative PCR, and Western blot. The C3H10T1/2 cells with different Hey1 expression level were induced by BMP-9 conditioned medium (BMP-9+C3H10T1/2 group, BMP-9+C3H10T1/2-Hey1 group, and BMP-9+C3H10T1/2-shHey1 group); the cells of control groups (C3H10T1/2 group and C3H10T1/2-Blank group) were cultured with normal medium. The mRNA and protein expression levels of osteogenesis related transcription factors (Runx2, osteopontin, and osteocalcin) were detected at 48 hours by real-time fluorescence quantitative PCR and Western blot assay. The cells proliferation and cycles were detected by MTT assay at 4, 5, 6, and 7 days and flow cytometry at 4, 5, and 10 days. The alkaline phosphatase (ALP) activity was analyzed by ELISA and observed by ALP staining at 4 and 7 days.
ResultsC3H10T1/2 cell lines with different Hey1 expression levels were successfully established. In osteogenesis compared with BMP-9+C3H10T1/2 group, overexpression of Hey1 enhanced the mRNA and protein expressions of transcription factors (Runx2, osteopontin, and osteocalcin), and the expression of osteogenic differentiation marker (ALP) (P < 0.05); however, inhibition of Hey1 expression significantly decreased the above indexes (P < 0.05). In cell proliferation activity compared with BMP-9+C3H10T1/2 group, overexpression of Hey1 increased absorbance (A) value in MTT assay and pecentage of G2+S cells in cytometry assay, but inhibition of Hey1 expression significantly decreased the indexes (P < 0.05).
ConclusionExpression of Hey1 is the important link in the osteogenic differentiation process of C3H10T1/2 cells induced by BMP-9, and plays an important role in the regulation of early cell proliferation.
Objective To review the progress and clinical application of malleable bone paste/putty. MethodsRecent literature about malleable bone paste/putty was reviewed and analyzed. ResultsThe preparation and clinical application of malleable bone paste/putty have become increasingly mature. Many kinds of malleable bone paste/putty have been applied extensively and the good clinical results have been achieved in the treatment of the irregular bone defects. The materials and methods for preparing malleable bone paste/putty are different. Then they have different bone repair abilities. ConclusionMalleable bone paste/putty provides effective method to treat irregular bone defects. But the malleable bone paste/putty still has some shortage, so further researches should be carried out.
ObjectiveTo explore the effect of fetal bovine serum (FBS) of different concentrations in the culture medium on osteogenic growth peptide (OGP) promoting bone marrow mesenchymal stem cells (BMSCs) proliferation and differentiation.
MethodsBMSCs were separated from limb bones of 8 Sprague Dawley rats (5 weeks old) and purified by adherence method, and BMSCs at passage 3 were divided into 4 groups according to OGP concentration: OGP 1×10-10 mol/L group, OGP 1×10-9mol/L group, OGP 1×10-8 mol/L group, and control group without OGP; and 0, 2%, 5%, 8%, and 10%FBS concentration gradient was used in each group. The cell proliferation rate was detected by MTT method at 1, 3, 5, 7, 9, and 12 days after culture, and the activity of intracellular alkaline phosphatase (ALP) was determined by the method of p-nitrophenyl phosphate disodium at 9 days after culture.
ResultsBMSCs showed adherent growth, rapid proliferation, long fiber vortex, and typical morphology. MTT analysis showed that cells could not sustain proliferation when FBS concentration was less than 5% in each group; when FBS concentration was above 8%, cells proliferated continually. Proliferation promoting effect of OGP 1×10-8 mol/L and 1×10-9 mol/L groups was significantly higher than that of the control group in all serum concentrations (P<0.05); when FBS concentration was lower than 10%, the proliferation promoting effect of OGP 1×10-8 mol/L group was significantly higher than that of the other 2 OGP groups (P<0.05), but when FBS concentration was 10%, OGP 1×10-8 mol/L group had no advantage of promoting proliferation. ALP test results showed that as the FBS concentration increased, ALP activity of all groups also significantly increased (P<0.05). Under the condition of 5%FBS and 8%FBS, the ALP activity of each OGP group was significantly greater than that of the control group, and it was the highest in OGP 1×10-8 mol/L group (P<0.05). Under the condition of 10%FBS, the ALP activity of each OGP group was still greater than that of the control group (P<0.05), but no significant difference was found between the OGP 1×10-8 mol/L group and OGP 1×10-9 mol/L group (P>0.05).
ConclusionThe concentration of 8%FBS is the best concentration of serum for OGP promoting the proliferation and differentiation of BMSCs, and the most suitable concentration of promoting the proliferation and differentiation of BMSCs is OGP 1×10-8 mol/L.
Objective Calcium phosphate bioceramics has a broad appl ication prospect because of good biocompatibil ity, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. Methods The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs)were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell prol iferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkal ine phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and prol iferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). Results DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and prol iferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were ber than that in group B. There was no significant difference in the change of the ALP activity among 4 groups at the first 3 days (P gt; 0.05); the ALP activity increased obviously in 4 groups at 7 days, group A was significantly higher than other groups (P lt; 0.05) and groups C, D were significantly higher than group D (P lt; 0.05). Conclusion The porous calcium phosphate ceramics has good cytocompatibil ity and the designed pores are favorable for cell ingrowth. The porous ceramicsfabricated by rapid prototyping has prominent osteogenic differentiation activity and can be used as a choice of scaffolds for bone tissue engineering.
To review the advance in the experimental studies and evaluate the potential therapeutic appl ication of the growth differentiation factor 5(GDF-5) and osteogenic protein 1 (OP-1) in intervertebral disc degeneration.Methods Relevant l iterature at home and abroad publ ished in recent years was searched and analyzedcomprehensively. Results The growth factor was one of the most potential proteins in curing the intervertebral discdegeneration. In vitro, exogenous GDF-5 or OP-1 increased the deoxyribonucleic acid and proteoglycan contents ofboth nucleus pulposus and annlus fibrosis cells types significantly. GDF-5 at 200 ng/mL or OP-1 significantly stimulatedproteoglycan synthesis and collagen synthesis. In vivo, the injection of GDF-5(100 μg) or OP-1(100 μg in 10 μL 5% lactose) resulted in a restoration of disc height, improvement of magnetic resonance imaging scores, and histologic grading scores had statistical significance. Conclusion A single injection of GDF-5 or OP-1 has a reparative capacity on intervertebral discs, presumably based on its effect to stimulate matrix metabol ism of intervertebral disc cells and enhance extracellular matrix production. A single injection of exogenous GDF-5 or OP-1 in the degenerated disc shows a good prospect.