Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.
Objective To comment on the recent advances of production and application of the bio-derived scaffold in the tissue engineered peripheral nerve. Methods The recent articles were systematically analyzed, and then the production methods of the bio-derived scaffold and its application to the tissue engineered peripheral nerve were evaluated and prospected. Results B iological tissues were processed by some methods to produce the bio-derived materials. These mat erials could maintain the structure and components of the tissues. Moreover, the immunogenicity of these materials was reduced. Conclusion Application of the bio-derived materials is a trend in the fabricating scaffold of the tissue en gineered peripheral nerve.
Objective Targeted adenoviral gene delivery from peripheral nerves was used to integrally analyse the characterization and time course of LacZ gene (AdLacZ) retrograde transfer to spinal cord and transgene product anterograde labeling ofperipheral nerve. Methods Recombinant replication-defective adenovirus containing AdLacZ was administrated to the cut proximal stumps of median and tibial nerves in Wister rats. Then the transected nerve was repaired with 10-0 nylon sutures. At different time point postinfection the spinal cords of C5 to T1 attached with DRGs and brachial plexuses, or L2 to L6 attached with DRGs and lumbosacralplexuses were removed. The removed spinal cord and DRGs were cut into 50 μm serialcoronal sections and processed for X-gal staining and immunohistochemical staining. The whole specimens of brachial or lumbosacral plexuses attaching with theirperipheral nerves were processed for X-gal staining. The number of X-gal stained neurons was counted and the initial detected time of retrograde labeling, peaktime and persisting period of gene expression in DRG sensory neurons, spinal cord motor neurons and peripheral nerves were studied. Results The gene transfer was specifically targeted to the particular segments of spinal cord andDRGs, and transgene expression was strictly unilaterally corresponding to the infected nerves. Within the same nerve models, the initial detected time of gene expression was earliest in DRG neurons, then in the motor neurons and latest in peripheral nerves. The persisting duration of β-gal staining was shortest in motor neurons, then in sensory neurons and longest in peripheral nerves. The initial detected time of β-gal staining in median nerve models was earlier in mediannerve models compared with that in the tibial nerve models. Although the initial detected time and the beginning of peak duration of β-gal staining were not same, the decreasing time of β-gal staining in motor and sensory neurons of thetwo nerve models were started at about the same day 8 post-infection. The labeled neurons were more in tibial nerve-models than that in median nerve models. Within the same models, the labeled sensory neurons of DRGs were morethan labeled motor neurons of ventral horn. The β-gal staining was tenser in median nerves than that in tibial nerves. However the persisting time of β-gal staining was longer in tibial nerve models. Conclusion The b gene expression in neurons and PNS renders this system particularly attractive for neuroanatomical tracing studies. Furthermore this gene delivery method allowing specific targeting of motor and sensory neurons without damaging the spinal cord might offer potentialities for the gene therapy of peripheral nerve injury.
OBJECTIVE To explore the effect of basic fibroblast growth factor (bFGF) combined with autogenous vein graft conduit on peripheral nerve regeneration. METHODS Fifty four New Zealand rabbits were divided into three groups. The main trunk of sciatic nerve of rabbit in one side was severed and bridged by autogenous vein. 0.2 ml bFGF solution (4,000 U/ml) was intravenously injected to the vein graft conduit as group A, the same amount of saline solution as group B, and no solution injection as group C. Microscopic examination, axon video analysis and nerve conduct velocity were performed at the 10th, 30th, and 100th day after operation. RESULTS The nerve fibers were grown into vein graft conduit in all groups at 30th after operation, they were more and regular in group A than that of group B and C, and the axon regeneration rate in group A was more than that of group B and C. CONCLUSION bFGF combined with autogenous vein graft conduit can markedly promote nerve regeneration.
Objective To investigate the effect of extract of ginkgo biloba leaves (EGb50) on the prol iferation of SCs cultured in vitro. Methods The SCs were isolated from 3-day-old SD rats’ sciatic nerves by the method of enzyme gradationdigestion (n=20) and the purified 2nd passage of SCs were divided into 2 groups: the experimental group, in which SCs were cultured in FBS-DMEM medium with EGb50 (terminal concentration: 50 μg/mL); the control group, in which SCs were cultured in the FBS-DMEM medium without EGb50. The absorbance (A) value was detected by the 2, 3-bis- (2-methoxy-4-nitro-5- sulfophenyl)-2H-tetrazol ium-5-carboxanil ide (XTT) method 1, 3, 5, 7 and 9 days after culture, then the growth curves was drawn. Cell cycle was detected by flow cytometry (FCM). Disintegration per minute (DPM) of SCs was detected by the method of 3H-thymine nucleoside (3H-TdR) 2 and 3 days after culture and nerve growth factor (NGF) synthesis in SCs culture media was detected by ELISA method. Results Most SCs were spindle-shaped with a purity above 90%. XTT detection showed that A value of SCs in the control group was gradually increased 3 days after culture, reached the peak 5 days after culture and gradually decreased from then; the A value in the experimental group experienced the similar changes, but it was higher than that in the control group at each time point (P lt; 0.01). 3H-TdR showed that the DPM of the experimental group was 1 961.78 ± 231.13 and 4 601.51 ± 605.08 at 2 and 3 days after culture, while for the control group, the A value was 1 347.15 ± 121.57 and 3 740.42 ± 158.73 at the same time point, indicating a significant difference between two groups (P lt; 0.01). FCM observation indicated that the SCs prol iferation index of the experimental group and the control group was 18.6% ± 3.2% and 9.7% ± 2.9%, indicating a significant difference between two groups (P lt; 0.01). ELISA observation showed that the NGF concentration in the experimental and the control group was (0.065 6 ± 0.003 9) ng/mL and (0.038 6 ± 0.003 6) ng/mL, indicating a significant difference (P lt; 0.01). Conclusion EGb50 is capable of enhancing the prol iferation of SCs cultured in vitro, which may be one of the important mechanisms to promote peripheral nerve regeneration.
Thiry wistar rats were used and divided in 2 groups. A segment of 6mm was excised in the sciatic nerve which were then bridged with chitin and skelal muscle. at 4,8,12 weeks after operation, In the chitin group a satisfactory regeneration of nerve fibers was evident with electrophysiologic and histologic examinations, and HRP retrogade labelling evaluation. The possible mechanism of enhancing nerve regeneration of chitin was also discussed.
Ten, fifteen and twenty millimeter nerve defects were produced on both trunks of sciatic nerve in 18 rabbits. The stumps of the nerve were enclosed by a silicon tube in the right hind limb (slilcon group) and the left limbs were free (free group). The proximal and distal nerve stumps in both groups were elongated by using a selfdesigned nerve stretching device, and the nerve were gradually stretched by 1mm, 2mm and 3mm per day respectively. when the expected lengths were achieved, the defects of the nerve were managed by endtoend coaptation. The samples were analysed by electrophysiological examination, and light and electron microscopes. Results were as follows: (1) The nerve defect could be repaired by gradual elongation in rabbits; (2) The results of silicon group were superior to the free group; (3) The structure and microcirculation of the nerve would be damaged if the stretching speed exceeded the limit of 2mm per day. But the eventual results following repair by elongation could not reached the normal level.
ObjectiveTo review the research progress of peripheral nerve mismatch regeneration, and to provide reference for its related basic research and clinical treatment.MethodsThe pathophysiology of peripheral nerve after injury, several main factors affecting the mismatch regeneration of peripheral nerve, and the fate of axon after mismatch regeneration were summarized by referring to the relevant literature at home and abroad in recent years.ResultsDistal pathways and target organs can selectively affect the mismatch regeneration of peripheral nerves; different phenotypes of Schwann cells have different effects on the mismatch regeneration of peripheral nerves; studying the mechanism of action of exosomes from different Schwann cells on different types of axons can provide a new direction for solving the mismatch regeneration of peripheral nerves.ConclusionPeripheral nerve mismatch regeneration is affected by various factors. However, the specific mechanism and characteristics of these factors remain to be further studied.
Objective To observe the revascularization process of chemically extracted acellular allogeneous nerve graft in repairing rat sciatic nerve defect. Methods Eighty adult male SD rats were selected. The sciatic nerve trunks from ischial tuberosity to the ramus of tibiofibular nerve of 16 SD rats were obtained and were prepared into acellular nerve stents by chemical reagent. Sixty-four SD rats were used to prepare the models of sciatic nerve defect (1.0 cm) and thereafter were randomized into two groups (n=32): experimental group in which acellular allogeneous nerve grafts were adopted and control group in which orthotopic transplantation of autologous nerve grafts were adopted. Postoperatively, the general conditions of all rats were observed, and the gross and ALP staining observation were conducted at 5, 7, 10, 14, 21, 28 days and 2, 3 months, respectively. Results All the incisions were healed by first intention. Trail ing status and toe’s dysfunction in extension happened to the right hindl imb of rats in two groups and were improved 6 weeks after operation. General observation showed that the grafts of two groups connected well to the nerves, with appearances similar to that of normal nerve. ALP staining demonstrated that the experimental group had no ingrowth of microvessel but the control group had ingrowth of microvessel 5 days after operation; the experimental group had ingrowth of microvessel but both groups had no microvessel 7 days after operation; few longitudinal microvessel throughout the grafts were observed in both groups 10, 14 and 21 days after operation; no obvious difference in capillary network of grafts was observed between two groups 28 days after operation; and the microvascular architecture of grafts in both groups were similar to that of normal nerve 2 and 3 months after operation. Conclusion When the chemically extracted allogeneous nerve graft is adopted to repair the peripheral nerve defect, new blood microvessels can grow into grafts timely and effectively.
OBJECTIVE: To investigate the effect of olfactory ensheathing cells (OECs) on functional recovery after sciatic nerve injury. METHODS: Upon silicone-tubulization of transected sciatic nerve in 30 adult rats. Thirty rats were divided into two groups(SAL group and OECs group); saline and OECs were injected into the silicone chamber in SAL group and in OECs group respectively. The status of functional recovery of injured sciatic nerve was observed by electrophysiological analysis, axon morphometry analysis. RESULTS: In OECs group on the 30th and the 90th days after sciatic nerve transection: 1. The latent period of CMAP shortened by 0.60 ms and 0.56 ms; the nerve conduction velocity promoted by 6.42 m/s and 5.36 m/s; the amplitude enhanced by 3.92 mv and 5.84 mv, respectively; 2. The HRP positive cells in lateral nucleus of spinal anterior horn increased by 11.63% and 25.01%; 3. The number of nerve fibers increased by 1,047/mm2 and 1,422/mm2 and the thickness of myelim sheath increased by 0.43 micron and 0.63 micron, respectively. CONCLUSION: The olfactory ensheathing cells are capable of promoting the functional recovery after peripheral nerve injury.