1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Remodeling" 1 results
        • MORPHOLOGICAL AND BIOMECHANICAL STUDY ON IN VIVO OSTEOGENESIS AFTER REPAIR OF CRANIAL DEFECTS WITH PLASTIC ENGINEERED BONE IN RABBITS

          Objective To investigate the morphology and biomechanics of in vivo osteogensis after repairing rabbit skull defects with plastic engineered bone which was prefabricated with alginate gel, osteoblasts and bone granules. Methods Twenty-eight rabbits were divided into group A (n=16), group B(n=8) and group C(n=4).The bilateral skull defects of 1 cm in diameter were made. Left skull defects filled with alginate gel-osteoblasts-bone granules(group A1) and right skull defects filled withalginate gel-bone granules(group A2).The defects of group B was left, as blank control and group C had no defect as normal control. The morphological change and bone formation were observed by methods of gross, histology and biomechanics. Results In group A1, the skull defects were almost entirely repaired by hard tissue 12 weeks after operation. The alginate gel-osteoblasts-bone granule material had changed into bone tissue with fewbone granules and some residuary alginate gel. The percentage of bone formation area was 40.92%±19.36%. The maximum compression loading on repairing tissue ofdefects was 37.33±2.95 N/mm; the maximum strain was 1.05±0.20 mm; andloading/strain ratio was 35.82±6.48 N/mm. In group A2, the alginate and bone granules material partially changed into bone tissue 12 weeks after operation. The percentage of bone formation area was 18.51%±6.01%. The maximum compression loading was 30.59±4.65 N; the maximum strain was 1.35±0.44 mm; and the loading/strainratio was 24.95±12.40 N/mm. In group B, the skull defects were mainly repaired bymembrane-like soft tissue with only few bone in marginal area;the percentage of bone formation area was 12.72%±9.46%. The maximum compression loading was 29.5±2.05 N; the maximum strain was 1.57±0.31mm;and the loading/strainratio was 19.90±5.47 N/mm.In group C, the maximum compression loading was 41.55±2.52 N; the maximum strain was 095±017 mm; and the l oading/strain ratio was 47.57±11.22 N/mm. 〖 WTHZ〗Conclusion〓〖WTBZ〗The plastic engineered bone prefabricated with algina te gelosteoblastsbone granule may shape according to the bone defects and ha s good ability to form bone tissue, whose maximum compression loading can reach 89 % of normal skull and the hardness at 12 weeks after operation is similar to that of normal skull. 

          Release date:2016-09-01 09:29 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品