Objective
To evaluate the effectiveness and safety of 25G illumination aided scleral buckling surgery for treatment of rhegmatogenous retinal detachment (RRD).
Methods
This is a retrospective case control study. Fifty-seven RRD patients (57 eyes) were enrolled in this study. There were 35 males (35 eyes) and 22 females (22 eyes). The patients were randomly divided into ophthalmoscope group (29 patients, 29 eyes) and illumination group (28 patients, 28 eyes). There was no differences in the data of gender, age, onset time, logarithm of the minimum angle of resolution (logMAR) best corrected visual acuity(BCVA) and information of retinal tears between the two groups (P>0.050). The patients in the ophthalmoscope group received operation of conventional scleral buckling with binocular indirect ophthalmoscope. The patients in the illumination group received scleral buckling surgery with the aid of intraocular illumination and noncontact wide-angle viewing system. The follow-up was ranged from 6 to 12 months. The BCVA, intraocular pressure, fundus examination and complications were observed and recorded.
Results
The difference of operation time between two groups was significant (t=2.124, P=0.031). In the ophthalmoscope group, 26 eyes (89.7%) achieved retinal reattachment, 3 eyes (10.3%) failed in retinal reattachment. In the illumination group, 26 eyes (92.8%) achieved retinal reattachment, 2 eyes (7.2%) failed in retinal reattachment. There was no difference of retinal reattachment rate (P=1.000). Five eyes failed in retinal reattachment, 3 eyes received sclera buckling surgery, 2 eyes received vitrectomy with silicone oil tamponade. The final reattachment ratios were both 100%. BCVA increased in both groups compared with pre-surgery BCVA (t=4.529, 5.108; P<0.001). The difference of BCVA between two groups was not significant (t=0.559, P=0.458). There was no significant difference of intraocular pressure and complications before and after surgery in both two groups (t=?1.386, ?1.437; P=0.163, 0.149). The difference of intraocular pressure between two groups was not significant (t=0.277, P=0.730). Subretinal hemorrhage occurred in 1 eye in the ophthalmoscope group. There was no iatrogenic retinal break, ?choroidal hemorrhage and endophthalmitis in the two groups.
Conclusion
25G intraocular illumination aided buckling surgery for treatment of RRD is fast, safe and effective.
Objective
To investigate the histopathologic charact eristic of the vitreous herniation out of sclerotomy site during vitrectomy.
Methods
Twenty specimens of tissues herniated at vitrectomy site were collected. The paraffin sections or fresh smears were stained with hematoxylineosin and examined under light microscope. The specimens were collected from the affected eyes with rhegmatogenous retinal detachment (9 cases), traumatic retinal detachment (1 case), miscellaneous vitreous hemorrhage (6 cases) and intraocular foreign body (4 cases).
Results
The herniated tissues were found to be retina in 4 cases, ciliary tissue in 1 case, retina and ciliary tissue in 1 case, uvea in 1 case, and hyaloid tissue in 13 cases.
Conclusion
There were not only vitreous, ciliary epithelial cells and pigment containe depithelia, but also ciliary body, retina and uvea in the prolapsed tissues of sclerotomy site, which might be related to the occurence of some clinical complications.
(Chin J Ocul Fundus Dis,2001,17:99-101)
Objective To evaluate the curative effects of vitreoctomy or simple scleral buckling on retinal multiple-tear detachment associated with tracted anterior flap. Methods The clinical data of 89 eyes in 89 patients with retinal multiple-tear detachment associated with tracted anterior flap diagnosed in Jan, 1999-Jan, 2002 were retrospectively analyzed. In the 89 patients, 41 had undergone vitreoctomy and 48 had undergone scleral buckling without vitrectomy. In the duration of 2- to 36-month follow-up with the mean of (11.02±7.90) months, visual acuity, retinal reattached rate and postoperative complication were examined and the results in the 2 groups were compared. Results In 41 eyes underwent vitreocotmy, successful reattachment was found in 38 (92.7% ); visual acuity increased in 33 (80.5%), didn′t change in 6 (14.6%), and decreased in 2 (4.9%); leakage of flocculent membrane in anterior chamber occured was found in 2 (4.9%), complicated cataract in 3 (7.3%),and severe proliferative vitreoretinopathy (PVR) in 3 (7.3%). In 48 eyes underwent scleral buckling, 41 (85.4%) had success reattachment; visual acuity increased in 36 (75.0%), didn′t change in 4 (8.3%), and decreased in 8 (16.7%); leakage of flocculent membrane in anterior chamber was found in 6 (12.5%), complicated cataract in 9 (18.8 %), and severe PVR in 8 (16.7%). Conclusion There isn′t any difference of the success rate of the surgery between vitrectomy and scleral buckling for retinal multiple-tear detachment associated with tracted anterior flap.The better visual acuity and less complications are found in the vitrectomy gro up than those in the scleral buckling group. (Chin J Ocul Fundus Dis,2004,20:209-211)
Objective
To observe the therapeutic effect of scleral buckling procedure on old retinal detachment.
Methods
The clinical data of 42 patients (46 eyes), including 24 males (27 eyes) and 18 females (19 eyes), with old retinal detachment treated by scleral buckling procedure in our department were retrospectively reviewed. The duration of the disease ranged from 1 month to 2 years. All the patients were with rhegmatogenous retinal detachment and combined with mainly predominantly-subretinal proliferative vitreoretinopathy (PVR) (stage C), including stage C1 of PVR in 16 eyes (34.8%), stage C2 in 19 eyes (41.3%), and stage C3 in 11 eyes (23.9%). Scleral buckling was performed on 13 eyes (28.3%) and cerclage combined buckling on 33 eyes (71.7%). Sterile air was injected into 36 eyes (78.3%) during the operation, and C 3F 8 was introvitreal injected into 7 eyes (15.2%) after the operation.
Results
The follow-up duration was from 6 months to 1 year (mean 7.3 months). Retina was completely reattached in 31 eyes (67.4%), and was alleviated obviously in 12 eyes (26.1%). The subretinal fluid increased after the operation with un-reattached retina and vitrectomy was performed in 2 eyes. One eye underwent vitrectomy due to the development of PVR. After the first operation, the curative ratio of retinal detachment was 67.4%, and effective ratio (cure and alleviation) was 93.5%. The visual acuity improved in 28 eyes (60.9%), kept no change in 11 eyes (23.9%), and decreased in 7 eyes (15.2%).
Conclusion
Reattachment of retina and improvement of visual acuity can be achieved in some degree in some patients with old retinal detachment who undergo simple scleral buckling procedure without vitrectomy.
(Chin J Ocul Fundus Dis, 2006, 22: 35-38)
ObjectiveTo observe the surgical effects of scleral buckling and vitrectomy for familial exudative vitreoretinopathy (FEVR).
Methods34 eyes of 27 patients with FEVR who underwent either scleral buckling or vitrectomy were enrolled in this study. There are stage 2B in 2 eyes (5.88%), stage 3B in 7 eyes (20.59%), stage 4A in 1 eye (2.94%), stage 4B in 16 eyes (47.06%), stage 5 in 8 eyes (23.53%). 5 eyes associated with rhegmatogenous retinal detachment. The surgical approaches had been chosen according to the disease stage, severity, extent and morphology of the proliferative membrane. 13 eyes (stage 2B in 2 eyes, 3B in 4 eyes, and 4 in 7 eyes) underwent scleral buckling and 21 eyes (stage 3B in 3 eyes, 4 in 10eyes, and 5 in 8 eyes) underwent vitreoretinal surgery. The main outcome measurement was the anatomic status of the macula, which was recorded as attached, partially attached or remain detached. The mean follow up was (18.00±14.61) months (range 4 to 60 months).
ResultsAmong 13 eyes received scleral buckling, the macula was attached in 2 eyes with stage 2B (15.38%), partially attached in 11 eyes (84.62%) including 4 eyes with stage 3B, 1 eye with stage 4A and 6 eyes with stage 4B. Among 21 eyes received vitrectomy, the macula was attached in 8 eyes (38.10%) including 2 eyes with stage 3B, 4 eyes with stage 4 and 2 eyes with stage 5; the macula was partially attached in 9 eyes (42.86%) inducing 4 eyes with stage 4 and 5 eyes with stage 5; the macula remained detached in 4 eyes (19.05%) including 1 eye with stage 3B, 2 eyes with stage 4 and 1 eye with stage 5.
ConclusionIf the surgical approaches were chosen based on the stage of FEVR and the severity, extent and morphology of the proliferative membrane, the surgery is effective and beneficial to FEVR patients.
With the surged prevalence of myopia, the pathogenic mechanism underlying myopia has attracted attention. At present, it is generally believed in the flied that the reduced blood perfusion in the choroid is crucial for myopigenesis. Then, in the process of myopigenesis, how are the blurred visual signals transmitted to the choroidal blood vessels through the retina and retinal pigment epithelium, leading to the reduced choroidal blood perfusion. The cellular and molecular mechanisms underpinning this process remain elusive. In recent years, the theory of scleral hypoxia has attracted much attention. Popular signaling molecules in current research include dopamine, epidermal growth factor, retinoic acid, cholinergic molecules and adenosine, etc. These factors are likely to participate in signal transduction in retina and RPE, thus causing changes in choroidal blood flow and affecting the occurrence and development of myopia. Therefore, these signaling factors and their downstream pathways may provide new ideas for the prevention and control of myopia targets.
The incidence of myopia is increasing year by year and the trend of younger age is obvious. The situation of myopia prevention and control is very serious. The sclera is the target organ for the development of myopia. When myopia occurs and develops, the ultrastructure of the sclera tissue will undergo pathological changes, resulting in a decrease in its tensile strength, then progressive axial growth and posterior sclera expansion. Scleral collagen cross-linking can effectively increase the hardness and tensile strength of scleral tissue, which may have great potential in the prevention and control of myopia, especially pathological myopia. At present, the effectiveness of scleral collagen cross-linking technology in the prevention and treatment of pathological myopia researches are still in the stage of animal experiments, and there are a lot of controversies on the safety. The development of any new technology to ensure safety is the primary condition. A comprehensive understanding of the safety of scleral collagen crosslinking in the prevention and control of myopia can provide more basis and guidance for the further study of scleral collagen crosslinking.
Posterior staphyloma (PS), a hallmark lesion of pathological myopia (PM), is defined as a local swelling of the posterior pole of the eyebulb. PS is closely associated with macular hole, retinoschisis, retinal detachment, chorioretinal degeneration and atrophy. At present, the pathogenesis of PS is not completely concluded, and there are no effective methods of prevention and treatment. The understanding of the epidemiology and risks, diagnose and detection methods, classification and grading, pathogenesis and intervention measures of PS can provide clues to the etiology study.
Objective To observe the hemodynamic changes in the retina and choroid after scleral buckling surgery in eyes with rhegmatogenous retinal detachment (RRD). MethodsA prospective clinical observational study. A total of 25 eyes of 25 patients with RRD who underwent scleral buckling surgery in Tianjin Eye Hospital from February to April 2024 were included in the study. Among them, 10 were male and 15 were female. Age was 17-68 years old. All cases were monocular. The surgical eye and the contralateral healthy eye were divided into the affected eye group and the contralateral healthy eye group respectively. Best corrected visual acuity (BCVA), scanning source optical coherence tomography angiography (SS-OCTA), and axial length (AL) measurements were performed 3 months after surgery. SS-OCTA examination of macular area was performed by VG200 of Visual Microimaging (Henan) Technology Co., LTD. Scanning range 21 mm×26 mm. According to the partitioning method of the early treatment group of glycosuria retinopathy, the retina within 21 mm of the macular fovea was divided into concentric circles with the macular fovea as the center and diameters of 1-3, 3-6, 6-12, 12-21 mm, respectively. The built-in software of the device was used to record the central area (12 mm×12 mm in the fovea of the macula) and the peripheral area (12-21 mm range) retinal superficial capillary plexus (SCP), deep capillary plexus (DCP), radial peripapillary capillaries (RPC) blood density and choroidal vascular index (CVI), choroidal vascular volume (CVV), and 1-3, 3-6, 6-12, 12-21 mm above concentric circles (S), nasal side (N), temporal side (T), and lower side (I) SCP, DCP, and RPC blood flow density. Quantitative data between the two groups were compared by independent sample t test or Wilcoxon signed rank test. The correlation between retinal and choroid blood flow parameters and postoperative BCVA was analyzed by Spearman correlation analysis. ResultsCompared with the opposite healthy eye group, SCP blood density in the central area (Z=?4.372), DCP blood density in the central area (Z=?2.829), and CVI in the peripheral area (Z=?2.138) were decreased in the affected eye group, and the differences were statistically significant (P<0.05). SCP: in the affected eye group, the blood flow density in T3-6 mm, T6-12 mm, N6-12 mm and T12-21 mm regions decreased, while the blood flow density in I6-12 mm regions increased, with statistical significance (P<0.05). DCP: blood flow density in S6-12 mm, I6-12 mm, S12-21 mm and I12-21 mm regions decreased significantly, and the differences were statistically significant (P<0.05). RPC: blood flow density decreased significantly in T6-12 mm and I12-21 mm, and the differences were statistically significant (P<0.05). CVI: T6-12 mm, S12-21 mm, T12-21 mm, I12-21 mm significantly decreased, and T1-3 mm, S12-21 mm significantly increased, the differences were statistically significant (P<0.05). Correlation analysis showed that AL growth was positively correlated with CVV in central region (r=0.408, P=0.040) . The number of pad pressure was negatively correlated with the blood density of central DCP (r=?0.422, P=0.030). ConclusionsAfter scleral buckling operation, the blood flow density and choroidal blood flow parameters in RRD affected eyes are lower than those in contralateral healthy eyes in some areas. The increase of AL is positively correlated with CVV in the central region, and the wider the range of pad pressure, the worse the recovery of DCP blood density.
Objective
To verify the significance of the morphological changes of the macula and its relationship to visual function by using optical coherence tomography (OCT) after scleral buckling procdure.
Methods
The macula of retinae of 68 patients (70 eyes) with reattached retinae after scleral buckling operation for retinal detachment were examined by OCT to scan the macula through fovea vertically and horizontally.
Results
Among the 70 eyes, 22 eyes revealed normal macula with thickness of neurosensory retina meant (146.47±20.59)μm. In the other 48 eyes (68.60%) with abnormal macula, 19 eyes showed extensive subretinal interspace, 9 eyes showed local subretinal interspace, 8 eyes showed macula edema, 4 eyes showed thin macula, 4 eyes showed subretinal proliferation and 4 eye showed epiretinal membrane over macula. In the normal macular structure group under the OCT, the visual acuity (VA) of the operated eyes was more than 0.3 in 6 eyes 2 weeks after operation and in 14 eyes 3 mons after operation. In the macula edema group, the VA was more than 0.3 in 1 eye 2 weeks after opoeration and 2 eyes 3 mons after operation. In the subretinal interspace group, the VA was more than 0.3 in 5 eyes 2 weeks after operation and in 23 eyes 3 mons after operation. The proportions of the numbers of operated eyes with the VA more than 0.3 after 3 mons of the operation in macular normal group subretinal interspace group and other macular disease group were significantly different (χ2=18.91, P<0.01).
Conclusion
OCT can precisely detect the structural changes of macula after retinal reattachment and assess visual function after surgery of retinal detachment.
(Chin J Ocul Fundus Dis, 2002, 18: 266-268)