ObjectiveTo describe the research progress of silk-based biomaterials in peripheral nerve repair and provide useful ideals to accelerate the regeneration of large-size peripheral nerve injury. Methods The relative documents about silk-based biomaterials used in peripheral nerve regeneration were reviewed and the different strategies that could accelerate peripheral nerve regeneration through building bioactive microenvironment with silk fibroin were discussed. Results Many silk fibroin tissue engineered nerve conduits have been developed to provide multiple biomimetic microstructures, and different microstructures have different mechanisms of promoting nerve repair. Biomimetic porous structures favor the nutrient exchange at wound sites and inhibit the invasion of scar tissue. The aligned structures can induce the directional growth of nerve tissue, while the multiple channels promote the axon elongation. When the fillers are introduced to the conduits, better growth, migration, and differentiation of nerve cells can be achieved. Besides biomimetic structures, different nerve growth factors and bioactive drugs can be loaded on silk carriers and released slowly at nerve wounds, providing suitable biochemical cues. Both the biomimetic structures and the loaded bioactive ingredients optimize the niches of peripheral nerves, resulting in quicker and better nerve repair. With silk biomaterials as a platform, fusing multiple ways to achieve the multidimensional regulation of nerve microenvironments is becoming a critical strategy in repairing large-size peripheral nerve injury. Conclusion Silk-based biomaterials are useful platforms to achieve the design of biomimetic hierarchical microstructures and the co-loading of various bioactive ingredients. Silk fibroin nerve conduits provide suitable microenvironment to accelerate functional recovery of peripheral nerves. Different optimizing strategies are available for silk fibroin biomaterials to favor the nerve regeneration, which would satisfy the needs of various nerve tissue repair. Bioactive silk conduits have promising future in large-size peripheral nerve regeneration.
OBJECTIVE: To observe the effects of silks on attachment, shape and function of chondrocytes cultured in vitro. METHODS: The silks from silk worm cocoons were digested by trypsin and coated with polylactic acid to from three dimensional scaffolds for rabbit rib chondrocyte culture. The growth and shape of chondrocytes were observed with phase contrast microscopy, scanning electron microscopy. RESULTS: The chondrocytes were adhered to silks slowly after chondrocytes were seeded into silk scaffolds and cells fixed on silks well 1 or 2 days later. Cells began to proliferate after 3 days and multiplicative growth was observed on the 6th day. Microholes of silk scaffolds were filled with chondrocytes 2 weeks later. Scanning electron microscopy showed that there was a lot of extracellular matrix surrounding cells. CONCLUSION: Silks are ideal for attachment, growth and function maintenance of chondrocytes, and silks can be used as scaffolds for chondrocytes in three dimensional culture.
Objective To observe the effect of dynamic mechanical loading on the proliferation, differentiation, and specific gene expression of MC3T3-E1 cells that on three-dimensional (3D) biomimetic composite scaffolds prepared by low temperature 3D printing technology combined with freeze-drying. Methods The silk fibroin, collagen type Ⅰ, and nano-hydroxyapatite (HA) were mixed at a mass ratio of 3∶9∶2 and were used to prepare the 3D biomimetic composite scaffolds via low temperature 3D printing technology combined with freeze-drying. General morphology of 3D biomimetic composite scaffold was observed. Micro-CT was used to observe the pore size and porosity of the scaffolds, and the water swelling rate, stress, strain, and elastic modulus were measured. Then, the MC3T3-E1 cells were seeded on the 3D biomimetic composite scaffolds and the cell-scaffold composites were randomly divided into 2 groups. The experimental group was subjected to dynamic mechanical loading (3 500 με, 1 Hz, 15 minutes per day); the control group was not subjected to loading treatment. After 7 days and 14 days, the cell-scaffold composites of 2 groups were harvested to observe the growth of cells on the scaffolds by HE staining and scanning electron microscope. And the gene and protein expressions of collagen type Ⅰ, BMP-2, and osteocalcin (OCN) were measured by real-time fluorescent quantitative PCR and Western blot. Results The 3D biomimetic composite scaffold was a white cubic grid. Micro-CT detection showed the pore network structure in the scaffold material with good pore connectivity. The diameters of large pore and micro-aperture were (506.37±18.63) μm and (62.14±17.35) μm, respectively. The porosity was 97.70%±1.37%, and the water absorption swelling rate was 1 341.97%±64.41%. Mechanical tests showed that the compression displacement of the scaffold was (0.376±0.004) mm, the compressive stress was (0.016±0.002) MPa, and the elastic modulus was (162.418±18.754) kPa when the scaffold was compressed to 10%. At 7 days and 14 days, HE staining and scanning electron microscope observation showed that the cells grew inside the scaffold, mainly distributed around the scaffold pore wall. The cells in experimental group were more than control group, and the cells morphology changed from shuttle to flat. There was no significant difference in the cell counting between 2 groups at 14 days after 200-fold microscopy (t=–2.024, P=0.080), but significant differences were found between 2 groups at different time points under different magnifications (P<0.05). Real-time fluorescent quantitative PCR showed that the mRNA relative expressions of collagen type Ⅰ and OCN in experimental group were significantly higher than those in control group at 7 and 14 days (P<0.05). However, the mRNA relative expression of BMP-2 showing no significant difference between 2 groups (P>0.05). The protein relative expressions of collagen type Ⅰ, BMP-2, and OCN in experimental group were significantly higher than those in control group at 7 and 14 days (P<0.05). Conclusion After dynamic mechanical loading, the expressions of BMP-2, collagen type Ⅰ, and OCN in MC3T3-E1 cells inoculated into 3D biomimetic composite scaffolds are significantly up-regulated, indicating that appropriate mechanical loads favor osteoblast differentiation of MC3T3-E1 cells.
Objective To investigate the biocompatibil ity of silk fibroin nanofibers scaffold with olfactory ensheathing cells (OECs) and to provide an ideal tissue engineered scaffold for the repair of spinal cord injury (SCI). Methods Silk fibroin nanofibers were prepared using electrospinning techniques and were observed by scanning electron microscope (SEM). Freshly isolated OECs from SD rats purified by the modified differential adherent velocity method were cultured. The cells at passage 1 (1 × 104 cells/cm2) were seeded on the poly-l-lysine (control group) and the silk fibroin nanofibers (experimental group) coated coversl ips in Petri dish. At desired time points, the morphological features, growth,and adhesion of the cells were observed using phase contrast inverted microscopy. The OECs were identified by the nerve growth factor receptor p75 (NGFR p75) immunofluorescence staining. The viabil ity of OECs was examined by l ive/dead assay. The prol iferation of OECs was examined by MTT assay. The cytotoxicity of the nanofibers was evaluated. Results The SEM micrographs showed that the nanofibers had a smooth surface with sol id voids among the fibers, interconnecting a porous network, constituted a fibriform three dimensional structure and the average diameter of the fibers was about (260 ± 84) nm. The morphology of OECs on the experimental group was similar to the cell morphology on the control group, the cells distributed along the fibers, and the directions of the cell protrusions were in the same as that of the fibers. Fluorescence microscopy showed that the purity of OECs was 74.21% ± 2.48% in the experimental group and 79.05% ± 2.52% in the control group 5 days after culture. There was no significant difference on cell purity between two groups (P gt; 0.05). The OECs in the experimental group stained positive for NGFR p75 compared to the control group, indicating that the cells in the experimental group still maintained the OECs characteristic phenotype. Live/dead staining showed that high viabil ity was observed in both groups 3 days after culture. There was no significant difference on cell viabil ity between two groups. The prol iferation activity at 1, 3, 5, 7, and 10 days was examined by MTT assay. The absorbency values of the control group and the experimental group had significant differences 3 and 5 days after culture (P lt; 0.05). The relative growth rates were 95.11%, 90.35%, 92.63%, 94.12%, and 94.81%. The cytotoxicity of the material was grade 1 and nonvenomous according to GB/T 16886 standard. Conclusion Silk fibroin nanofibers scaffold has good compatibility with OECs and is a promising tissue engineered scaffold for the repair of SCI.
Objective To develop three-dimensional (3D) porous nanofiber scaffold of PLGA-silk fibroincollagen and to investigate its cytocompatibil ity in vitro. Methods Method of electrostatic spinning was used to prepare 3D porous nanofiber scaffold of PLGA-silk fibroin-collagen (the experimental group) and 3D porous nanofiber scaffold of PLGA (the control group). The scaffold in each group was observed by scanning electron microscope (SEM). The parameters of scaffold fiber diameter, porosity, water absorption rate, and tensile strength were detected. SC harvested from the bilateral brachial plexus and sciatic nerve of 8 SD suckl ing rats of inbred strains were cultured. SC purity was detected by S-100 immunohistochemistry staining. The SCs at passage 4 (5 × 104 cells/mL) were treated with the scaffold extract of each group at a concentration of 25%, 50%, and 100%, respectively; the cells treated with DMEM served as blank control group. MTT method was used to detect absorbance (A) value 1, 3, 5, and 7 days after culture. The SC at passage 4 were seeded on the scaffold of the experimental and the control group, respectively. SEM observation was conducted 2, 4, and 6 days after co-culture, and laser scanning confocal microscope (LSCM) observation was performed 4 days after co-culture for the growth condition of SC on the scaffold. Results SEM observation: the scaffold in two groups had interconnected porous network structure; the fiber diameter in the experimental and the control group was (141 ± 9) nm and (205 ± 11) nm, respectively; the pores in the scaffold were interconnected; the porosity was 87.4% ± 1.1% and 85.3% ± 1.3%, respectively; the water absorption rate was 2 647% ± 172% and 2 593% ± 161%, respectively; the tensile strength was (0.32 ± 0.03) MPa and (0.28 ± 0.04) MPa, respectively. S-100 immunohistochemistry staining showed that the SC purity was 96.5% ± 1.3%. MTT detection: SC grew well in the different concentration groups and the control group, the absorbance (A) value increased over time, significant differences were noted among different time points in the same group (P lt; 0.05), and there was no significant difference between the different concentration groups and the blank control group at different time points (P gt; 0.05). SEM observation: in the experimental group, SC grew well on the scaffold, axon connection occurred 4 days after co-culture, the cells prol iferated massively and secreted matrix 6 days after co-culture, and the growth condition of the cells was better than the control group. The condition observed by LSCM 4 days after co-culture was the same as that of SEM. Conclusion The 3D porous nanofiber scaffoldof PLGA-silk fibroin-collagen prepared by the method of electrostatic spinning is safe, free of toxicity, and suitable for SC growth, and has good cytocompatibil ity and proper aperture and porosity. It is a potential scaffold carrier for tissue engineered nerve.
ObjectiveTo review the application of silk fibroin scaffold in bone tissue engineering.
MethodsThe related literature about the application of silk fibroin scaffold in bone tissue engineering was reviewed, analyzed, and summarized.
ResultsSilk fibroin can be manufactured into many types, such as hydrogel, film, nano-fiber, and three-dimensional scaffold, which have superior biocompatibility, slow biodegradability, nontoxic degradation products, and excellent mechanical strength. Meanwhile these silk fibroin biomaterials can be chemically modified and can be used to carry stem cells, growth factors, and compound inorganic matter.
ConclusionSilk fibroin scaffolds can be widely used in bone tissue engineering. But it still needs further study to prepare the scaffold in accordance with the requirement of tissue engineering.
Test of tissue tolerance to domastic prosthetic materials (carbon fiber mesh, siliconized velvet, silk cloth and dacron cloth) as a subcutaneos transplant was performed in the adcominal wall of rabbit. These implants and their surroundding tissues were excied for studies at second , fourth, eighth and the twelfth weeks after operation. Ratio of fibroblast count to inflammatory cells count which is a common parameter of tissue tolerance was calculated in these four groups. The result shows that fibroblastic cell reaction elicited by carbon fiber mesh is the greates among the four prosthetic materials, the second one is dasron cloth. The inflammatory cell reaction elicited by silk is the greatest among the four materials, the second is carbon fiber mesh, and the dacron cloth the least. Tissure tolerance of dacron cloth is the best in the four prosthetic materials for implantation while sick is the worst.
Objective
To investigate the effectiveness of Kirschner wire combined with silk tension band in the treatment of ulnar collateral ligament avulsion fracture of the thumb metacarpophalangeal joint.
Methods
Between September 2008 and October 2011, 14 patients with ulnar collateral ligament avulsion fracture of the thumb metacarpophalangeal joint were treated using a combination of Kirschner wire and silk tension band. There were 8 males and 6 females, aged 23-55 years (mean, 40.8 years). The causes of injury were machinery twist injury in 5 cases, manual twist injury in 4 cases, falling in 4 cases, sports injury in 1 case. The time from injury to operation was 2 hours-14 days. All the patients presented pain over the ulnar aspect of the metacarpophalangeal joint of the thumb, limitation of motion, and joint instability with pinch and grip. The lateral stress testing of the metacarpophalangeal joint was positive. Function training was given at 2 weeks after operation.
Results
All incisions healed by first intention. The lateral stress testing of the metacarpophalangeal joint was negative. All the patients were followed up 6-18 months (mean, 13.1 months). The X-ray films showed good fracture reduction and healing with an average time of 7 weeks (range, 4-10 weeks). At last follow-up, the thumbs had stable flexion and extension of the metacarpophalangeal joint, normal opposition function and grip and pinch strengths. According to Saetta et al. criteria for functional assessment, the results were excellent in 11 cases and good in 3 cases; the excellent and good rate was 100%.
Conclusion
It is an easy and simple method to treat ulnar collateral ligament avulsion fracture of the thumb metacarpophalangeal joint using Kirschner wire combined with silk tension band, which can meet the good finger function.
【Abstract】 Objective To summarize the latest developments in silk fibroin as biomaterials and its appl icationsin tissue engineering. Methods The recent original l iterature on silk fibroin as biomaterials were extensively reviewed,illustrating the properties and appl ications of silk fibroin biomaterials in tissue engineering. Results Silk fibroinas biomaterials had good biocompatibil ity and degradabil ity. It supported the cell adhesion differentiation and growth. It was used for artificial l igament, vessel, bone, nerve and so on. After modification, silk fibroin could be extensively used in tissue engineering. Conclusion Silk fibroin is a good biomaterial, which has a great potential appl ications in tissue engineering.
Objective To summarize the latest developments in silk protein fiber as biomaterials and their applications in tissue engineering. Methods Recent original literature on silk protein fiber as biomaterials were reviewed, illustrating the properties of silk protein fiber biomaterials. Results The silk protein fiber has the same functions of supporting the cell adhesion, differentiation and growth as native collagen, and is renewed as novel biomaterials with good biocompatibility, unique mechanical properties and is degradable over a longer time. Conclusion Silk protein-fiber can be used as asuitable matrix for three dimensional cell culture in tissue engineering. It has a great potential applications in other fields.