1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Spinal fusion of lumbar" 1 results
        • SPINAL FUSION OF LUMBAR INTERTRANSVERSE PROCESS BY USING TISSUE ENGINEERED BONE WITH XENOGENEIC DEPROTEINIZED CANCELLOUS BONE AS SCAFFOLD

          Objective To study the properties of the xenogeneic deproteinized cancellous bone used as a scaffold in the bone tissue engineering andits application to the spinal fusion of the lumbar intertransverse process in agoat. Methods The deproteinized bone was derived from an adult pig’s femoral cancellous bone through the physical and chemical treatments. Its morphological features, constituting components, and biomechanical properties were examined by the scanning electron microscopy, X-ray diffraction analysis, and mechanical experimental instrument. The cell-material complex was observed under the inverted phase contrast microscope to evaluate the adhesion and the growth of the osteoblasts. The experimental model of the spinal fusion of the lumbar intertransverse process was produced in 12 male goats aged 6-8 months, which were divided into two groups. In Group A, the tissue engineered bone constructed by thexenogeneic deproteinized cancellous bone, the recombinant human bone morphogenetic protein 2, and the mesenchymal stem cells was used for the spinal fusion; however, in Group B the autoilium was used. The samples were harvested at 4, 8 and 12 weeks postoperatively, and a series of examinations were performed, including the radiography and the histomorphological assay. Results The deproteinized cancellous bone had a natural pore network system, with an aperture ranging in size from 200 to 500 μm, containing a main organic material ofcollagen and the inorganic material of hydroxyapatite. So, the deproteinized cancellous bone had a good mechanical strength and a good histocompatibility. In Group A, the X-ray examination at different timepoints postoperatively showed that at 4 weeks,the bridging areas of all the fusion sites were not clear, especially on the internal side; at 8 weeks, the upper and lower bridged parts had a narrowed gap, with formation of much continuous bony callus; at 12 weeks, a complete fusion occurred. In the early stage, the material density was slightly lowerin Group A than in Group B, but at 12 weeks the density was almost the same in both the groups. Histological examination in the transplant area showed that at 4 weeks in Group A there was a new bone formation in a multipoint way; at 8 weeks, a “sandwichshaped” new bone wascrossed with the transplanting materials; and at 12 weeks, a medullary cavity was remodeled and a new cancellous bone was formed. The osteogenic process of thetissue engineered bone constructed by the xenogeneic deproteinized cancellous bone scaffold was almost the same as the autoilium osteogenesis. Conclusion The xenogeneic deproteinized cancellous bone is a good material in the bone tissue engineering, which can be used as an osteogenesis scaffold andprovide a stable environment for revascularization and osteoblastic differentiation.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品