Reconstructing three-dimensional (3D) models from two-dimensional (2D) images is necessary for preoperative planning and the customization of joint prostheses. However, the traditional statistical modeling reconstruction shows a low accuracy due to limited 3D characteristics and information loss. In this study, we proposed a new method to reconstruct the 3D models of femoral images by combining a statistical shape model with Laplacian surface deformation, which greatly improved the accuracy of the reconstruction. In this method, a Laplace operator was introduced to represent the 3D model derived from the statistical shape model. By coordinate transformations in the Laplacian system, novel skeletal features were established and the model was accurately aligned with its 2D image. Finally, 50 femoral models were utilized to verify the effectiveness of this method. The results indicated that the precision of the method was improved by 16.8%–25.9% compared with the traditional statistical shape model reconstruction. Therefore, the method we proposed allows a more accurate 3D bone reconstruction, which facilitates the development of personalized prosthesis design, precise positioning, and quick biomechanical analysis.
Objective To evaluate the feasibil ity and cl inical significance of the computed tomography angiography (CTA) for the latissimus dorsi muscle (LDM) flap transplantation. Methods From September 2007 to August 2008, 3 cases of soft tissue defects in l imbs were treated with LDM flap transplantation. Three patients included 2 males and 1 female whowere 23 to 42 years old. All of soft tissue defects were caused by trauma. The locations were the forearm in 2 cases and the leg in 1 case. The area of defect was 17 cm × 8 cm-20 cm × 10 cm. All cases received CTA to observe the distribution and anastomosis of thoracodorsal artery. Subsequently, three-dimensional computer reconstruction were carried out to display the stereoscopic structure of the LDM flap and to design the LDM flap before operation. Results The anatomy characteristic of LDM flap can be displayed accurately by the three-dimensional reconstruction model. The distribution of thoracodorsal artery in 3 cases of flaps was in concordance with preoperative design completely. All the flaps were excised successfully, the area of the flap was 19 cm × 10 cm-22 cm × 12 cm. All the transferred flaps survived completely. All cases were followed up from 4 months to 12 months. The color and texture of the flaps were good. Conclusion The three-dimensional reconstructive images can provide visible, stereoscopic and dynamic anatomy for cl inical appl ication of LDM flap. The digitized three-dimensional reconstructive models of LDM flap structures can be appl ied in cl inical training and pre-operative design.
Objective To quantitatively evaluate the effect of 2 types of pressures induced injury by using threedimensional (3D) reconstruction of rats loaded tibial is anterior muscle from two-dimensional (2D) image of serial histological sections. Methods Twenty female or male Sprague Dawley rats, aged 10-12 weeks and weighing 280-300 g, were randomlydivided into experimental group (n=10) and control group (n=10). The random side of tibial is anterior muscle was givenintermittent gradient (8.0-21.3 kPa) and sustained (13.3 kPa) pressure in 0.12 cm2 area in experimental group and controlgroup, respectively; the experiment was terminated and the general condition of rats was observed after 3 cycles, and a single cycle included 2 hours of compression and 30 minutes of release. The general observations of pressed skin and tibial is anterior muscle were done after 24 hours of pressure rel ief, and the tibial is anterior muscle was harvested integrally from the loaded side, then made into interval 4 μm serial sections. After HE staining, 2D images were obtained. Necrosis and injury areas were distinguished by Image Pro Plus (IPP) 6.0 software and image registration was conducted by Photoshop 8.0.1 after 2D panorama images acquired by digital microscope (× 40) and IPP mosaic software. 3D reconstruction was establ ished via data processing using Mimics 10.1 software so as to get the volume, the surface area, and 3D images of the whole piece of tibial is anterior muscle and injury areas respectively. Results All rats of 2 groups survived till experiment terminated and no skin ulcers occurred after 24 hours. Edema and indentation were observed on press side skin and tibial is anterior muscles of 2 groups, fadeless maroon area was observed in control group. A total of 994 sl ices were obtained from 20 samples of tibial is anterior muscles. 3D images suggested that injury of control group was severe, which penetrated the whole piece of tibial is anterior muscle and expandedalong the tibia bony prominence. By contrast, injury of experimental group was less, but had similar width to the contact surface of indentor. There was no significant difference in the volume and the surface area of tibial is anterior muscle between 2 groups (P gt; 0.05), while the injury volume and the injury surface area were significantly smaller in experimental group than in control group (P lt; 0.05). Conclusion 3D reconstruction is an effective method to quantitatively evaluate pathological changes inside the integrity tissue and can provide the visual basis for the mechanical property distributed in the loaded muscle. Intermittent gradient pressure can reduce deep tissue injury.
Objective
To study digitize design of custom-made radial head prosthesis and to verify its matching precision by the surgery of preoperative three-dimensional (3-D) virtual replacement.
Methods
Six healthy adult volunteers (3 males and 3 females, aged 25-55 years with an average of 33 years) received slice scan of bilateral elbow by Speed Light 16-slice spiral CT. The CT Dicom data were imported into Mimics 10.0 software individually for 3-D reconstruction image, and the left proximal radial 3-D image was extracted, the mirror of the image was generated and it was split into 2 pieces: the head and the neck. The internal diameter and the length of the radial neck were obtained by Mimics 10.0 software measurement tools. In Geomagic Studio 12 software, the radial head was simulated to cover the cartilage surface (1 mm thickness) and generated to an entity. In UG NX 8.0 software, the stem of prosthesis was designed according to the parameters above and assembled head entity. Each custom-made prosthesis was performed and verified its matching precision by the surgery of preoperative 3-D virtual replacement.
Results
Comparing the morphology of 6 digitize custom-made prostheses with ipsilateral radial heads by the 3-D virtual surgery, the error was less than 1 mm. The radial head prosthesis design on basis of the contralateral anatomy was verified excellent matching.
Conclusion
The 3-D virtual surgery test and the digitized custom-made radial head prosthesis will be available for clinical accurate replacement.
ObjectiveTo explore the value and role of post-processing techniques such as 3D reconstruction in the online education mode in neurosurgery undergraduate clinical probation teaching.MethodsA retrospective analysis method was used to collect 120 clinical 5-year medical students who were trained in neurosurgery at West China Hospital of Sichuan University from January 2019 to May 2020, including 40 students receiving traditional imaging materials offline (control group 1), 40 students being taught on image post-processing technology offline (control group 2), and 40 students being taught on-line image post-processing technology during the novel coronavirus epidemic (observational group). The students’ scores of departmental rotation examination and feedback survey results on teaching satisfaction were collected, and multiple comparison was conducted between the observational group and the two control groups respectively.ResultIn the control group 1, the control group 2, and the observational group, the theoretical test scores were 36.80±3.22, 38.17±2.61, and 38.97±2.79, respectively; the case analysis scores were 37.05±2.01, 38.40±2.62, and 39.25±2.88, respectively; the total scores were 73.85±5.06, 76.57±4.29, and 78.10±4.53, respectively; the scores of interest in teaching were 84.47±3.71, 86.05±2.87, and 86.82±2.60, respectively; the scores of mastery of knowledge were 82.85±4.39, 84.90±2.72, and 85.78±2.36, respectively; and the scores of overall satisfaction with teaching were 84.17±3.45, 85.97±2.64, and 86.37±2.59, respectively. The differences among the three groups were all statistically significant (P<0.05). The observational group differed significantly from the control group 1 in all the above scores (P<0.05), while did not differed from the control group 2 in any of the above scores (P>0.05).ConclusionsIn neurosurgery internship activities, the online application of image post-processing techniques such as 3D reconstruction will help students establish 3D spatial concepts, better understand the brain anatomy, and improve students’ academic performance and acceptance.
Objective To discuss the authenticity of reconstructing the anterior cruciate l igament (ACL) threedimensional digital model of normal adult knee joint by use of MRI. Methods The double knee joint specimens were selected from 20 fresh normal adult corpses and double knee joint of 20 normal adult volunteers, and were scanned with MRI; continuous image data of level thick 1.0 mm were acquired, and then these data were imported into Mimics 10.01 software for three-dimensional reconstruction; and full three-dimensional digital models were built, including the corpse specimens (corpsemodel group) and normal adult (normal model group). The relevance anatomy index of ACL were measured with easuring tool of Mimics 10.01 software, and double knee joint specimens of 20 fresh normal adult corpses were dissected, and the relevance data were measured (corpse specimens group). Results There was no significant difference in all indexes between corpse model group and corpse specimen group (P gt; 0.05), and between corpse model group and normal model group (P gt; 0.05). Conclusion The image data gathered by MRI could reconstruct the ACL three-dimensional digital model of normal adult knee joint, which has authenticity.
【Abstract】ObjectiveTo evaluate the value of MR imaging with a contrast-enhanced multi-phasic isotropic volumetric interpolated breath-hold examination (VIBE) in diagnosis of primary liver carcinoma. MethodsThirty-two consecutive patients with surgical-pathologically confirmed 42 foci of primary carcinoma of liver underwent comprehensive MR examination of the upper abdomen, routine two-dimensional (2D) T1WI and T2WI images were acquired before administration of Gd-DTPA for contrast enhancement. Then, contrast-enhanced multi-phasic VIBE was acquired followed by 2D T1WI images. The lesion appearances on hepatic arterial, portal venous and equilibrium phases of VIBE sequence were carefully observed along with delineation of hepatic arterial and portal venous structures. The lesion detection rates and lesion characterization ability were compared among various MR sequences. Results33(78.6%), 30(71.4%), 38(90.5%) and 42(100%) foci were displayed respectively on T2WI, non-enhanced T1WI, enhanced T1WI and enhanced 3D-VIBE images (P<0.05). The hepatic arterial anatomy of 30 patients (93.8%) and the portal venous structure of 31 patients (96.9%) were clearly depicted on enhanced 3D-VIBE images. Using MIP and MPR reconstruction techniques, the feeding arteries of 14 foci and draining vein of 12 foci were clearly displayed.ConclusionHigh-quality 3D-VIBE images are not only better than 2D images in lesion detection and characterization for primary liver carcinoma, but also able to provide much more information about hepatic vascular anatomy.
Objective To employ spinal virtual surgery system (SVSS) for preoperative planning of thoracolumbar pedicle screw fixation, and to establ ish the measurement method for pedicle screw-related parameters. Methods Eight thoracicand lumbar spine specimens (T11-L3) were selected. First of all, SVSS was used for the preoperative planning of pedicle screw and the parameters of both sides of pedicle were measured in every vertebral segment, including angle of axial view (Aa), angle of sagittal view (As), x-direction entrance (XE), total pedicle length of axial view (TLa), total pedicle length of sagittal view (TLs), pedicle height (PH), pedicle width (PW), and pedicle spongy width (PSW). Then the corresponding parameters of the right and left pedicle screws of the specimens were measured actually. Finally, its accuracy was verified by comparing the data by virtual measurement and actual measurement. Results There was no significant difference in the parameters of virtual measurement (Aa, As, TLa, TLs, XE, PW, PSW, and PH) and actual measurement (Aa, As, TLa, XE, PW, PSW, and PH) between the right and left sides (P gt; 0.05). Except XE of the L3 vertebral segment and PSW of T11 and T12 vertebral segments (P lt; 0.05), the differences in other parameters of other segments were not significant (P gt; 0.05). Conclusion After statistical analysis and comparison, the feasibil ity of preoperative planning of thoracolumbar pedicle screw fixation and the accuracy of the measurement of the SVSS is verified.
Objective
To review the application progress of digital technology in auricle reconstruction.
Methods
The recently published literature concerning the application of digital technology in auricle reconstruction was extensively consulted, the main technology and its specific application areas were reviewed.
Results
Application of digital technology represented by three-dimensional (3D) data acquisition, 3D reconstruction, and 3D printing is an important developing trend of auricle reconstruction. It can precisely guide auricle reconstruction through fabricating digital ear model, auricular guide plate, and costal cartilage imaging.
Conclusion
Digital technology can improve effectiveness and decrease surgical trauma in auricle reconstruction. 3D bioprinting of ear cartilage future has bright prospect and needs to be further researched.
Objective To explore the histochemical staining for distinguishing and local izing nerve fibers and fascicles at histological level in three-dimensional reconstruction of peri pheral nerves. Methods The right median nerve was harvested from one fresh cadaver and embedded in OCT compound. The sample was serially horizontally sl iced with 6 μm thickness. All sections were stained with Karnovsky-Roots method (group A, n=30) firstly and then stained with toluidine blue (group B, =28) and Ponceau 2R (group C, n=21) in proper sequence. The results of each step were taken photos (× 100). After successfully stitching, the two-dimensional panorama images were compared, including texture feature, the number and aver gray level of area showing acetylchol inesterase (AchE) activity, and result of auto microscopic medical image segmentation. Results In groups A, B, and C, the number of AchE-positive area was (21.63 ± 4.06)× 102, (20.64 ± 3.51)× 102, and (20.54 ± 5.71)× 102, respectively, showing no significant difference among 3 groups (F=0.64, P=0.54); the mean gray level was (1.41 ± 0.06)× 102, (1.10 ± 0.05)× 102, and (1.14 ± 0.07)× 102, respectively, showing significant differences between group A and groups B and C (P lt; 0.001). In the image of group A, only AchE-positive area was stained; in the image of group B, myelin sheath was obscure; and in the image of group C, axons and myelin sheath could be indentified, the character of nerve fibers could be distinguished clearly and accurately, and the image segmentation of fascicles could be achieved easier than other 2 images. Conclusion The image of Karnovsky-Roots-toluidine blue-Ponceau 2R staining has no effect on the AchE-positive area in the image of Karnovsky-Roots staining and shows better texture feature. This improved histochemical process may provide ideal image for the three-dimensional reconstruction of peri pheral nerves.