1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Tissue engineered bone" 47 results
        • EFFECTS OF IMPACTION ON TISSUE ENGINEERED BONE MODIFIED BY BMP-2 GENE

          Objective To observe effects of the direct impaction onthe cell survival and the bone formation of the tissue engineered bone modified by the adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP2) gene and to verify the feasibility of the impacted grafting with it. Methods The marrow stromal cells (MSCs) were separated from the canine bone marrow and were cultured. MSCs were transfected with the Adv-hBMP2 gene and combined with the freeze-dried cancellous bone (FDB) to form the tissue engineered bone. Four days after the combination, the tissue engineered bone was impacted in a simulated impactor in vitro and implanted in the mouse. The cell survivals were evaluated with SEM 1 and 4 days after the combination, immediately after the impaction, and 1 and 4 days after the impaction, respectively. The bone formation and the allograft absorption were histologically evaluated respectively. Results There were multiple layers of the cells and much collagen on FDB before the impaction. Immediately after the impaction, most of the cells on the direct contact area disappearedand there was much debris on the section. Some of the cells died and separatedfrom the surface of FDB at 1 day, the number of the cells decreased but the collagen increased on the surface at 4 days. Histologically, only the fibrous tissue was found in FDB without the cells, the bone formation on FDB was even in distribution and mass in appearance before the impaction, but declined and was mainly on the periphery after the impaction in the AdvhBMP2 modified tissue-engineered bone. Conclusion The simulated impaction can decrease the cells survival and the bone formation of the AdvhBMP-2 modified tissue-engineered bone. The survival cells still function well.It is feasible to use the tissue engineered bone in the impaction graft.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        • VASCULARIZATION IN TRANSPLANTATION OF BIODERIVED BONE COMPOUNDED WITH MARROW STROMAL STEM CELLS IN REPAIR OF GOAT TIBIAL SHAFT DEFECT

          Objective To study the vascularization of the compositeof bio-derived bone and marrow stromal stem cells(MSCs) in repairing goat tibial shaft defect.Methods Bio-derived bone was processed as scaffold material. MSCs were harvested and cultured in vitro. The multiplied and induced cells were seeded onto the scaffold to construct tissue engineered bone. A 20 mm segmental bone defect inlength was made in the middle of the tibia shaft in 20 mature goats and fixed with plate. The right tibia defect was repaired by tissue engineered bone (experimental side), and the left one was repaired by scaffold material (control side).The vascularization and osteogenesis of the implants were evaluated by transparent thick slide, image analysis of the vessels, and histology with Chinese ink perfusion 2, 4, 6, and 8 weeks after operation.Results More new vessels were found in control side than in experimental side 2 and 4 weeks after implantation (Plt;0.05). After 8 weeks, there was no significant difference in number of vessels between two sides(Pgt;0.05), and the implants were vascularized completely. New bone tissue was formed gradually as the time and the scaffold material degraded quickly after 6 and 8 weeks in the experimental side. However, no new bone tissue was formed andthe scaffold degraded slowly in control side 8 weeks after operation.Conclusion Bio-derived bone has good quality of vascularization. The ability of tissue-engineered bone to repair bone defect is better than that of bio-derived bone alone.

          Release date:2016-09-01 09:33 Export PDF Favorites Scan
        • AN EXPERIMENTAL STUDY ON EFFECT OF ASTRAGALUS POLYSACCHARIDES ON CHITOSAN /POLYLACTIC ACID SCAFFOLDS FOR REPAIRING ALVEOLAR BONE DEFECTS IN DOGS

          Objective To investigate the effect of astragalus polysaccharides(AP) on chitosan/polylactic acid(AP/C/PLA)scaffolds and marrow stromal cells(MSCs)tissue engineering on periodontal regeneration of horizontal alveolar bone defects in dogs. Methods MSCs were isolatedfrom the bone marrow and then cultured in conditioned medium to be induced to become osteogenic.The MSCs were harvested and implanted into AP/C/PLA and C/PLA scaffolds.A horizontal alveolar bone defect(5 mm depth, 2 mm width)were produced surgically in the buccal side of the mandibular premolar 3 and 4 of 10 dogs.The defects were randomly divided into 4 groups(n=10):Group A, root planning only(blank contro1); group B, AP/C/PLA with conditioned medium(medium contro1);group C, C/PLA with MSCs(scaffolds contro1); and group D, AP/C/PLA with MSCs(experimental group).Eight weeks after surgery, block sections of the defects were collected for gross, histological and X-ray analysis. Results MSCs induced in vitro exhibited an osteogenic phenotype with expressingcollagen I and alkaline phosphatase. X-ray film observation showed that the bone density and height had no changes in group A; in group B, the bone density was increased to a certain extent and furcation area reached a few height, but no height was increased in interdental septum; in group C,the bone density was increased and furcation area nearly reached the native height,but interdental septum reached a few height;in group D,the bone density was increased significantly and furcation area and interdental septum reached the native height. Histological evaluation showed that there was greater tissue formation in group D than that in groups A, B and C, in which new alveolar bone, new cementum, periodontal ligament with Sharpey’s fibers, and new bone tissue was similar to native periodontal tissues. Ingroup A,B, C and D respectively, the amount of new alveolar bone regeneration was 0.83±0.30, 1.46±0.55, 2.67±0.26 and 2.90±0.41 mm; new cementum regeneration was 0.78±0.45,1.30±0.60,2.29±0.18 and 2.57±0.22 mm; the amount of connective tissue adhesion was 0.80±0.22,1.33±0.34,2.23±0.42 and 2.64±0.27 mm; all showing significant differenecs between group D and groups A, Band C (Plt;0.05).Conclusion The technology of tissue engineering with AP/C/PLAscaffolds and induced MSCs may contribute to periodontal regeneration.

          Release date:2016-09-01 09:23 Export PDF Favorites Scan
        • CORE-BINDING FACTOR α1 GENE MODIFIED MARROW MENSENCHYMAL STEM CELLS FOR REPAIRING RADIAL DEFECTS

          Objective To study the feasibility of core-binding factor α1 (Cbfa1) gene modified marrow mesenchymal stem cells (MSCs) composed with porcine acellular bone extracellular matrix in repairing the radial defects. Methods Radial defects of 1.2 cm in length were created in 40 Japanese white rabbits and they were divided into four groups. In group A, MSCs isolated from homogeneous rabbits were infected with Cbfa1 recombinant adenovirus and implanted into acellular bone exteracellular matrix, and then the complexes were implanted into defects. In group B, the complexes including the MSCs without Cbfa1 gene-modified and scaffoldmaterial were implanted into defects. In group C, only the scaffold material was implanted. In group D, defects were not treated as the control. The macroscopic, X-ray and histologic analysis were performed to evaluate the repair effect at 4, 8 and 12 weeks postoperatively. The repaired radius were examined by biomechanical test at 12 weeks postoperatively. Results By gross examination,mature hard new bone formed at grafted areas at 12 weeks postoperativelyin group A, osteotomized ends connected by much callus in group B and less callus in group C at grafted areas. In contrast, bone nonunion formed in group D. X-ray and histological examination showed that the repaired results of defects in the group A were better than those in others groups evidently in extracellular matrix degradation, new bone remodeling and marrow cavity rebuilding at 4 and 8 weeks postoperatively. At 12 weeks postoperatively, the cortical bone became mature lamellar bone, new bone remolding was complete and marrow cavity was smooth in group A. Only proximal end of defects showed that marrow cavity was remolded partially in group B. The continuous callus could be observed in bone defect, and no obvious marrow cavity remolding was observed in group C. Lots of fibrous connective tissue filled in defect and bone nonunion was shown in group D. There was no significant difference in the damage compress loading of repaired radius between groups A, B and D (Pgt;0.05), but there was significant difference between groups C and D(Plt;0.01).Conclusion These results demonstrate that Cbfa1 gene modified MSCs combined with acellular bone extracellular matrix can be used to repair rabbit radial defects.

          Release date:2016-09-01 09:26 Export PDF Favorites Scan
        • EXPERIMENTAL STUDIES ON PREPARATION AND PROPERTY OF SCAFFOLD MATERIAL OF BIO-DERIVED BONE LOADING WO-1

          Objective To provide the chosen scaffold materials for experiment and application of tissue engineering and to detect the properties of the collagenbio-derived bone scaffold material loading WO-1. Methods The purebio-derived bone scaffold material, bio-derived bone scaffold material loading collagen, collagen bio-derived bone scaffold material loading WO-1 were made by use of allograftbone, and typeI collagen, and WO-1. The morphological features, constitute components and mechanical properties were examined by scanning electron microscopy,X- rays diffraction and mechanical assay. Results The bio-derived bone scaffold material maintained natural network pore system; the bio-derived bone scaffold material loading collagen maintained natural network pore system, the surface of network pore system was coated by collagen membrane; the collagen bio-derived bone scaffold material loading WO-1 maintained natural network pore system, thesurface of network pore system was coated by collagen membrane. The pore sizes of the 3materials were 90-700 μm, 75-600 μm and 80-600 μm, respectively, and the porosities were 87.96%, 80.47%, 84.2%. There was no significant difference between them(P>0.05).The collagen bio-derived bone scaffold material loading WO-1 consisted of [HA,Ca10(OH)2(PO4)6]. There was no significant difference in the mechanical strength of the three scaffold materials. Conclusion The bio-derived bone scaffold material loading WO-1 is as good as bio-derived bone scaffold material and collagen bio-derived bone scaffold material, and it is an effective scaffold material for tissue engineering bone.

          Release date:2016-09-01 09:29 Export PDF Favorites Scan
        • EXPERIMENTAL STUDIES ON A NEW BONE TISSUE ENGINEERED SCAFFOLD BIOMATERIALS COMBINED WITH CULTURED MARROW STROMAL STEM CELLS IN VITRO

          Objective To explore the biocompatibility of poly(lacticacid/glycolic acid/asparagic acid-co-polyethylene glycol) biomaterials (PLGA-ASP-PEG) and biological behaviors of cultured marrow stroml stem cells (MSCs) combined with this new type of scaffold in tissue engineering. Methods The PLGA-ASP-PEG tri-block copolymers were obtained through bulk ringopening copolymerization method.MSCs were isolated from the bone marrow of 4 week old New Zealand rabbits. The 3rdgeneration MSCs were cultured combining with PLGA-ASP-PEG in vitro, while cells cultured in PLGA as control group. The cell adhesion rate and the adhesivepower were examined by conventional precipitation method and micropipette aspiration technique respectively. The morphological features were studied by scanning electron microscope. The proliferation behavior of the cells was analyzed by MTT assay. The cell cycle, proliferation index, DNA index and apoptosis of the cells were detected by flow cytometry. The synthesis of protein and collagen were examined by Coomassie Brilliant Blue dyes and 3H-Proline incorporation test. Results The MSCs adhered and grew well on the surface of the biomaterial PLGA-ASP-PEG. The powers of cell adhesion, proliferation and protein and collagen synthesis of the cells were all significantly higher than those of PLGA group (P<0.05), but the apoptosis rate was significantly lower than that of PLGA group (P<0.05). The DNA indexes showed the cells of both PLGA-ASP-PEG group and PLGAgroup were normal diploid cells. Conclusion PLGA-ASP-PEG showedgood biocompatibilityand the biological properties improved greatly compared with the PLGA scaffold materials. These results demonstrated that the promise of PLGAASPPEG canbe used as an ideal scaffold material for construction of tissue engineered bone to restore bone defects in bone tissue engineering.

          Release date:2016-09-01 09:19 Export PDF Favorites Scan
        • PREPARATION AND DEGRADATION CHARACTERISTICS OF BONE REPAIR COMPOSITE--PDLLA/HA/DBM

          OBJECTIVE: To explore a new method of preparing the composite of DL-polylactic acid (PDLLA), hydroxyapatite(HA), decalcium bone matrix (DBM), and to observe the degradation characteristics of PDLLA/HA/DBM in vitro. METHODS: An emulsion blend method was developed to prepare the composite of PDLLA/HA/DBM based on the weight rate of PDLLA:HA:DBM = 1.5-2:1-1.5:1. The characteristics of the particles was observed by scanning electron microscope. In vitro, PDLLA/HA/DBM and PDLLA were put into PBS(pH7.4) respectively; the pH value, weight and biomechanics of them were determined during the degradation. RESULTS: Without heating, the emulsion blend method could be developed to prepare PDLLA/HA/DBM. Scanning electron microscope showed that the gap diameter in the compound material was 100 to 400 microns, and the porosity was 71.3%; During degradation, the pH value of PDLLA decreased little within 2 weeks, then decreased obviously and decreased to 4.0 at the end of the 4th week; while the pH value of PDLLA/HA/DBM kept quite steady and was 6.4 at the end of the 12th week. The weight of PDLLA decreased little within 4 weeks, then decreased obviously and remained 50% of its prime weight at the end of the 12th week; while the weight of PDLLA/HA/DBM decreased little within 5 weeks, then decreased obviously and remained 60% of the prime at the end of the 12th week. The prime biomechanical strength was 1.33 MPa in PDLLA and 1.71 MPa in PDLLA/HA/DBM. There was significant difference between them (P lt; 0.05). The strength of PDLLA decreased little within 3 weeks, then decrease obviously and was 0.11 MPa at the end of the 12th week; the strength of PDLLA/HA/DBM decreased little within 4 weeks, then decrease obviously and was 0.21 MPa at the end of the 12th week. CONCLUSION: The emulsion blend method is a new method to prepare bone repair materials. As a new bone repair material, PDLLA/HA/DBM is suitable for bone tissue engineering for its good characteristics of porosity and degeneration.

          Release date:2016-09-01 09:35 Export PDF Favorites Scan
        • CLINICAL APPLICATION OF BIO-DERIVED BONE TRANSPLANTATION WITH TISSUE ENGINEERINGTECHNIQUE:YEAR FOLLOW-UP

          To summarize the medium-term cl inical result of bio-derived bone transplantation in orthopedics with tissue engineering technique. Methods From December 2000 to June 2001, 10 cases of various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogenous osteoblasts from periosteum (1 × 106/ mL) with bio-derived bone scaffold following 3 to 7 days co-culture. Six men and 4 women were involved in this study, aged from 14 to 70 years with a median of 42 years. Among them, there were 2 cases of bone cyst, 1 case of non-union of old fracture, 6 cases of fresh comminuted fracture with bone defect, and 1 case of chronic suppurative ostemyel itis. The total weight of tissue engineered bone was 3-15 g in all the cases, averaged 7.3 g in each case. Results The wound in all the case healed by first intention. For 7 year follow up, bone union was completed within 3.0 to 4.5 months in 9 cases, but loosening occurred and the graft was taken out 1 year after operation in 1 case. The X-ray films showed that 9 cases achieved union except one who received resection of the head of humerus. No obvious abnormities were observed, and the function of affected l imbs met daily l ife and work. Conclusion Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other compl ications are observed in the cl inical appl ication.

          Release date:2016-09-01 09:12 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY OF REPAIRING BONE DEFECT WITH TISSUE ENGINEERED BONE SEEDED WITH AUTOLOGOUS RED BONE MARROW AND WRAPPED BY PEDICLED FASCIAL FLAP

          Objective To investigate the effect of repairing bone defect with tissue engineered bone seeded with the autologous red bone marrow (ARBM) and wrapped by the pedicled fascial flap and provide experimental foundation for cl inicalappl ication. Methods Thirty-two New Zealand white rabbits (male and/or female) aged 4-5 months old and weighing2.0-2.5 kg were used to make the experimental model of bilateral 2 cm defect of the long bone and the periosteum in the radius. The tissue engineered bone was prepared by seeding the ARBM obtained from the rabbits on the osteoinductive absorbing material containing BMP. The left side of the experimental model underwent the implantation of autologous tissue engineered bone serving as the control group (group A). While the right side was designed as the experimental group (group B), one 5 cm × 3 cm fascial flap pedicled on the nameless blood vessel along with its capillary network adjacent to the bone defect was prepared using microsurgical technology, and the autologous tissue engineered bone wrapped by the fascial flap was used to fill the bone defect. At 4, 8, 12, and 16 weeks after operation, X-ray exam, absorbance (A) value test, gross morphology and histology observation, morphology quantitative analysis of bone in the reparative area, vascular image analysis on the boundary area were conducted. Results X-ray films, gross morphology observation, and histology observation: group B was superior to group A in terms of the growth of blood vessel into the implant, the quantity and the speed of the bone trabecula and the cartilage tissue formation, the development of mature bone structure, the remolding of shaft structure, the reopen of marrow cavity, and the absorbance and degradation of the implant. A value: there was significant difference between two groups 8, 12, and 16 weeks after operation (P lt; 0.05), and there were significant differences among those three time points in groups A and B (P lt; 0.05). For the ratio of neonatal trabecula area to the total reparative area, there were significant differences between two groups 4, 8, 12, and 16 weeks after operation (P lt; 0.05), and there were significant differences among those four time points in group B (P lt; 0.05).For the vascular regenerative area in per unit area of the junctional zone, group B was superior to group A 4, 8, 12, and 16 weeks after operation (P lt; 0.05). Conclusion Tissue engineered bone, seeded with the ARBM and wrapped by the pedicled fascial flap, has a sound reparative effect on bone defect due to its dual role of constructing vascularization and inducing membrane guided tissue regeneration.

          Release date:2016-09-01 09:08 Export PDF Favorites Scan
        • HISTOLOGICAL OBSERVATION OF BIODERIVED BONE PREPARED BY DIFFERENTMETHODS AFTER IMPLANTATION

          Objective To explore the histological changes of bio-derived bone prepared by different methods after implantation, and to provide the scaffold material from xenogeneic animal for tissue engineering. Methods Theextremities of porcine femur were cut into 0.5 cm×0.5 cm×0.5 cm. Then they were divided into 5 groups according to different preparation methods: group A was fresh bone just repeatedly rinsed by saline; group B was degreased; group C was degreased and decalcificated; group D was degreased, acellular and decalcificated; group E wasdegreased and acellular. All the materials were implantated into femoral muscle pouch of rabbit after 25 kGy irradiation sterilization. The cell counting ofinflammatory cells and osteoclasts, HE and Masson staining, material degradation, collagen and new bone formation were observed at 2, 6, and 12 weeks postoperatively. Results The residue level of trace element in biomaterials prepared by different methods is in line with the standards. All the animals survived well. There were no tissue necrosis, fluid accumulation or inflammation at all implantation sites at each time point. The inflammatory cells counting was most in group A, and there was significant difference compared with other groups(P<0.05). There was no significant difference in osteoclasts counting among all groups. For the index of HE and Masson staining, collagen and new bone formation, groups C and D were best, group E was better, and groups A and B were worse. Conclusion The degreased, acellular and decalcificated porcine bone is better in degradation,bone formation, and lower inflammatory reaction, it can be used better scaffold material for tissue engineered bone.

          Release date:2016-09-01 09:23 Export PDF Favorites Scan
        5 pages Previous 1 2 3 4 5 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品