1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Author
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Author "XUShi-jun" 2 results
        • Experimental Study on PHBHHx Co-culturing with Mouse Induced Pluripotent Stem Cells outside Body

          ObjectiveTo study the external biocompatibility bewteen the mouse induced pluripotent stem cells (miPSCs) and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBHHx). MethodsAfter we recovered and subcultured miPSCs, we divided them into two groups. There was one group cultured with material of PHBHHx films outside the body. We observed the adhesive pattern of miPSCs on film by fluorescence of 4, 6-diamidino-2-phenylindole (DAPI) staining. The cell vitality was detected by cell counting kit-8 (CCK-8). The morphology of miPSCs attached on the film was visualized under scanning electron microscope (SEM). We used the traditional petri dish to culture miPSCs and detect the cell activity by CCK-8. ResultsMiPSCs can adhere and proliferate on PHBHHx films. The result of cell vitality which detected by CCK-8 showed that there was a statistical difference in OD value between culturing on PHBHHx films and traditional cultivation (0.617±0.019 vs. 0.312±0.004, P < 0.05). ConclusionThere are adhesion and proliferation on the surface of cells patch made by miPSCs co-culturing with PHBHHx film. Compared with traditional culturing in the cell culture dish, culturing in PHBHHx films have great advantages in the process of adhesion and proliferation. PHBHHx can be used as one of the scaffold for stem cells treating various disease.

          Release date: Export PDF Favorites Scan
        • Experimental Research of Small Molecule Compound XAV939 Inducing Mouse Embryonic Stem Cell into Cardiac Myocyte

          ObjectiveTo investigate the feasibility of small molecule compound XAV939 to induce mouse embryonic stem cells (mESC) to differentiate into cardiac myocytes. MethodsWe revived and cultured undifferentiated mESC growing confluently on trophoderm made of mouse embryonic inoblast cell. The mESCs were digested by trypsin to form embryoid bodies (EBs) by handing drop method. After plated, EBs were induced by XAV939 to differentiate into cardiac myocytes. We observed the cardiac myocytes with lightmicroscopy and identified it with immunofluorescence method. Result The XAV939 can effectively induce mESC into cardiac myocytes with the mean efficiency rate of 71.85%±1.05%. The differentiated cardiac myocytes shrinked spanteously and rhythmicly. The cardiac troponin T as the special marker of cardiac myocyte was positive. ConclusionThe small molecule compound XAV939 could effectively induce mES cells into cardiac myocytes.

          Release date: Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品